Introduction to Hilbert C^{*}-modules, II

Huaxin Lin
Department of Mathematics
East China Normal University
University of Oregon

Orthogonal Complement

Definition
 Let H be a Hilbert module over a C^{*}-algebra A.

Orthogonal Complement

Definition
 Let H be a Hilbert module over a C^{*}-algebra A. The algebraic tensor product $H \otimes A^{* *}$ becomes a right $A^{* *}$-module if we set $(h \otimes a) \cdot a_{1}=h \otimes a a_{1}$ for all $h \in H$ and $a, a_{1} \in A^{* *}$.

Orthogonal Complement

Definition

Let H be a Hilbert module over a C^{*}-algebra A. The algebraic tensor product $H \otimes A^{* *}$ becomes a right $A^{* *}$-module if we set $(h \otimes a) \cdot a_{1}=h \otimes a a_{1}$ for all $h \in H$ and $a, a_{1} \in A^{* *}$. Define $\langle-,-\rangle: H \otimes A^{* *} \times H \otimes A^{* *} \rightarrow A^{* *}$

Orthogonal Complement

Definition

Let H be a Hilbert module over a C^{*}-algebra A. The algebraic tensor product $H \otimes A^{* *}$ becomes a right $A^{* *}$-module if we set $(h \otimes a) \cdot a_{1}=h \otimes a a_{1}$ for all $h \in H$ and $a, a_{1} \in A^{* *}$. Define $\langle-,-\rangle: H \otimes A^{* *} \times H \otimes A^{* *} \rightarrow A^{* *}$ by

$$
\left\langle\sum_{i} h_{i} \otimes a_{i}, \sum_{j} x_{j} \otimes b_{j}\right\rangle=\sum_{i, j} a_{i}^{*}\left\langle h_{i}, x_{j}\right\rangle b_{j} .
$$

Orthogonal Complement

Definition

Let H be a Hilbert module over a C^{*}-algebra A. The algebraic tensor product $H \otimes A^{* *}$ becomes a right $A^{* *}$-module if we set $(h \otimes a) \cdot a_{1}=h \otimes a a_{1}$ for all $h \in H$ and $a, a_{1} \in A^{* *}$. Define $\langle-,-\rangle: H \otimes A^{* *} \times H \otimes A^{* *} \rightarrow A^{* *}$ by

$$
\left\langle\sum_{i} h_{i} \otimes a_{i}, \sum_{j} x_{j} \otimes b_{j}\right\rangle=\sum_{i, j} a_{i}^{*}\left\langle h_{i}, x_{j}\right\rangle b_{j} .
$$

Set $N=\left\{z \in H \otimes A^{* *}:\langle z, z\rangle=0\right\}$.

Orthogonal Complement

Definition

Let H be a Hilbert module over a C^{*}-algebra A. The algebraic tensor product $H \otimes A^{* *}$ becomes a right $A^{* *}$-module if we set $(h \otimes a) \cdot a_{1}=h \otimes a a_{1}$ for all $h \in H$ and $a, a_{1} \in A^{* *}$. Define $\langle-,-\rangle: H \otimes A^{* *} \times H \otimes A^{* *} \rightarrow A^{* *}$ by

$$
\left\langle\sum_{i} h_{i} \otimes a_{i}, \sum_{j} x_{j} \otimes b_{j}\right\rangle=\sum_{i, j} a_{i}^{*}\left\langle h_{i}, x_{j}\right\rangle b_{j} .
$$

Set $N=\left\{z \in H \otimes A^{* *}:\langle z, z\rangle=0\right\}$. Then $\left(H \otimes A^{* *}\right) / N$ becomes a pre-Hilbert $A^{* *}$-module containing H as an A-submodule.

Orthogonal Complement

Definition

Let H be a Hilbert module over a C^{*}-algebra A. The algebraic tensor product $H \otimes A^{* *}$ becomes a right $A^{* *}$-module if we set $(h \otimes a) \cdot a_{1}=h \otimes a a_{1}$ for all $h \in H$ and $a, a_{1} \in A^{* *}$. Define $\langle-,-\rangle: H \otimes A^{* *} \times H \otimes A^{* *} \rightarrow A^{* *}$ by

$$
\left\langle\sum_{i} h_{i} \otimes a_{i}, \sum_{j} x_{j} \otimes b_{j}\right\rangle=\sum_{i, j} a_{i}^{*}\left\langle h_{i}, x_{j}\right\rangle b_{j} .
$$

Set $N=\left\{z \in H \otimes A^{* *}:\langle z, z\rangle=0\right\}$. Then $\left(H \otimes A^{* *}\right) / N$ becomes a pre-Hilbert $A^{* *}$-module containing H as an A-submodule. Denote by H^{\sim} the Hilbert $A^{* *}$-module $\left.\left(\left(H \otimes A^{* *}\right) / N\right)^{-}\right)^{\sharp}$. It is self-dual, i.e., $\left(H^{\sim}\right)^{\sharp}=H^{\sim}$. Moreover, $B\left(H^{\sim}\right)=L\left(H^{\sim}\right)$ is an W^{*}-algebra.

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T}

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $\left(H \otimes A^{* *}\right) / N$ (with $\|\tilde{T}\|=\|T\|$).

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $\left(H \otimes A^{* *}\right) / N$ (with $\left.\|\tilde{T}\|=\|T\|\right)$. Therefore, \tilde{T} extends uniquely to a module map in $B\left(H^{\sim}\right)$.

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $\left(H \otimes A^{* *}\right) / N$ (with $\left.\|\tilde{T}\|=\|T\|\right)$. Therefore, \tilde{T} extends uniquely to a module map in $B\left(H^{\sim}\right)$. If $T \in B\left(H, H^{\sharp}\right)$, for any $h \in H$,

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $\left(H \otimes A^{* *}\right) / N$ (with $\left.\|\tilde{T}\|=\|T\|\right)$. Therefore, \tilde{T} extends uniquely to a module map in $B\left(H^{\sim}\right)$. If $T \in B\left(H, H^{\sharp}\right)$, for any $h \in H, T(h) \in H^{\sharp}$.

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $\left(H \otimes A^{* *}\right) / N$ (with $\left.\|\tilde{T}\|=\|T\|\right)$. Therefore, \tilde{T} extends uniquely to a module map in $B\left(H^{\sim}\right)$. If $T \in B\left(H, H^{\sharp}\right)$, for any $h \in H, T(h) \in H^{\sharp}$. But H^{\sharp} is an A-submodule of H^{\sim}.

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $\left(H \otimes A^{* *}\right) / N$ (with $\|\tilde{T}\|=\|T\|$). Therefore, \tilde{T} extends uniquely to a module map in $B\left(H^{\sim}\right)$. If $T \in B\left(H, H^{\sharp}\right)$, for any $h \in H, T(h) \in H^{\sharp}$. But H^{\sharp} is an A-submodule of H^{\sim}. Define

$$
\left\langle T\left(\sum_{i} h_{i} \otimes a_{i}\right), \sum_{j} x_{j} \otimes b_{j}\right\rangle=\sum_{i, j} a_{i}^{*}\left[T\left(h_{i}\right)\left(x_{j}\right)\right] b_{j} .
$$

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $\left(H \otimes A^{* *}\right) / N$ (with $\|\tilde{T}\|=\|T\|$). Therefore, \tilde{T} extends uniquely to a module map in $B\left(H^{\sim}\right)$. If $T \in B\left(H, H^{\sharp}\right)$, for any $h \in H, T(h) \in H^{\sharp}$. But H^{\sharp} is an A-submodule of H^{\sim}. Define

$$
\left\langle T\left(\sum_{i} h_{i} \otimes a_{i}\right), \sum_{j} x_{j} \otimes b_{j}\right\rangle=\sum_{i, j} a_{i}^{*}\left[T\left(h_{i}\right)\left(x_{j}\right)\right] b_{j} .
$$

Then T becomes an element in $B\left(\left(\left(H \otimes A^{* *}\right) / N\right)^{-}, H^{\sim}\right)$.

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $\left(H \otimes A^{* *}\right) / N$ (with $\|\tilde{T}\|=\|T\|$). Therefore, \tilde{T} extends uniquely to a module map in $B\left(H^{\sim}\right)$. If $T \in B\left(H, H^{\sharp}\right)$, for any $h \in H, T(h) \in H^{\sharp}$. But H^{\sharp} is an A-submodule of H^{\sim}. Define

$$
\left\langle T\left(\sum_{i} h_{i} \otimes a_{i}\right), \sum_{j} x_{j} \otimes b_{j}\right\rangle=\sum_{i, j} a_{i}^{*}\left[T\left(h_{i}\right)\left(x_{j}\right)\right] b_{j} .
$$

Then T becomes an element in $B\left(\left(\left(H \otimes A^{* *}\right) / N\right)^{-}, H^{\sim}\right)$. So T then extends to a map in $B\left(H^{\sim}\right)$ with $\|\tilde{T}\|=\|T\|$.

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $\left(H \otimes A^{* *}\right) / N$ (with $\|\tilde{T}\|=\|T\|$). Therefore, \tilde{T} extends uniquely to a module map in $B\left(H^{\sim}\right)$. If $T \in B\left(H, H^{\sharp}\right)$, for any $h \in H, T(h) \in H^{\sharp}$. But H^{\sharp} is an A-submodule of H^{\sim}. Define

$$
\left\langle T\left(\sum_{i} h_{i} \otimes a_{i}\right), \sum_{j} x_{j} \otimes b_{j}\right\rangle=\sum_{i, j} a_{i}^{*}\left[T\left(h_{i}\right)\left(x_{j}\right)\right] b_{j} .
$$

Then T becomes an element in $B\left(\left(\left(H \otimes A^{* *}\right) / N\right)^{-}, H^{\sim}\right)$. So T then extends to a map in $B\left(H^{\sim}\right)$ with $\|\tilde{T}\|=\|T\|$. Moreover such extension is unique.

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$.

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$.

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed.

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$.

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H)
$$

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H) .
$$

So $|T|^{1 / 2}(H)=|T|(H)$.

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H) .
$$

$$
\text { So }|T|^{1 / 2}(H)=|T|(H) \text {. Set } B=\{S \in L(H): S|T|(H) \subset|T|(H)\} \text {. }
$$

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H) .
$$

So $|T|^{1 / 2}(H)=|T|(H)$. Set $B=\{S \in L(H): S|T|(H) \subset|T|(H)\}$. So $|T|^{1 / 2} \in B$. It is obvious that $|T|^{1 / 2}$ is also one-to-one on $|T|(H)$.

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H) .
$$

So $|T|^{1 / 2}(H)=|T|(H)$. Set $B=\{S \in L(H): S|T|(H) \subset|T|(H)\}$. So $|T|^{1 / 2} \in B$. It is obvious that $|T|^{1 / 2}$ is also one-to-one on $|T|(H)$. Therefore $|T|^{1 / 2}$ is invertible in B.

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H) .
$$

So $|T|^{1 / 2}(H)=|T|(H)$. Set $B=\{S \in L(H): S|T|(H) \subset|T|(H)\}$. So $|T|^{1 / 2} \in B$. It is obvious that $|T|^{1 / 2}$ is also one-to-one on $|T|(H)$. Therefore $|T|^{1 / 2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}\left(|T|^{1 / 2}\right)$

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H) .
$$

$$
\text { So }|T|^{1 / 2}(H)=|T|(H) \text {. Set } B=\{S \in L(H): S|T|(H) \subset|T|(H)\} \text {. So }
$$

$|T|^{1 / 2} \in B$. It is obvious that $|T|^{1 / 2}$ is also one-to-one on $|T|(H)$.
Therefore $|T|^{1 / 2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}\left(|T|^{1 / 2}\right)$ or 0 is an isolated point in $\operatorname{sp}\left(|T|^{1 / 2}\right)$.

Theorem 2.2 Let A be a C^{*}-algebra, H be a Hilbert A-module and $T \in L(H)$. If T has a closed range, then

$$
H=\operatorname{ker} T \oplus|T|(H) .
$$

In particular, T has a polar decomposition $T=V|T|$ in $L(H)$.

Proof:

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H) .
$$

$$
\text { So }|T|^{1 / 2}(H)=|T|(H) \text {. Set } B=\{S \in L(H): S|T|(H) \subset|T|(H)\} \text {. So }
$$

$|T|^{1 / 2} \in B$. It is obvious that $|T|^{1 / 2}$ is also one-to-one on $|T|(H)$.
Therefore $|T|^{1 / 2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}\left(|T|^{1 / 2}\right)$ or 0 is an isolated point in $\operatorname{sp}\left(|T|^{1 / 2}\right)$.

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H)
$$

So $|T|^{1 / 2}(H)=|T|(H)$. Set $B=\{S \in L(H): S|T|(H) \subset|T|(H)\}$. So $|T|^{1 / 2} \in B$. It is obvious that $|T|^{1 / 2}$ is also one-to-one on $|T|(H)$. Therefore $|T|^{1 / 2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}\left(|T|^{1 / 2}\right)$ or 0 is an isolated point in $\operatorname{sp}\left(|T|^{1 / 2}\right)$.

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H)
$$

So $|T|^{1 / 2}(H)=|T|(H)$. Set $B=\{S \in L(H): S|T|(H) \subset|T|(H)\}$. So $|T|^{1 / 2} \in B$. It is obvious that $|T|^{1 / 2}$ is also one-to-one on $|T|(H)$.
Therefore $|T|^{1 / 2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}\left(|T|^{1 / 2}\right)$ or 0 is an isolated point in $\operatorname{sp}\left(|T|^{1 / 2}\right)$.
Let p be the range projection of $|T|$ in $\left(L(H)^{* *}\right.$.

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H)
$$

So $|T|^{1 / 2}(H)=|T|(H)$. Set $B=\{S \in L(H): S|T|(H) \subset|T|(H)\}$. So $|T|^{1 / 2} \in B$. It is obvious that $|T|^{1 / 2}$ is also one-to-one on $|T|(H)$.
Therefore $|T|^{1 / 2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}\left(|T|^{1 / 2}\right)$ or 0 is an isolated point in $\operatorname{sp}\left(|T|^{1 / 2}\right)$.
Let p be the range projection of $|T|$ in $\left(L(H)^{* *}\right.$. Then $|T|^{1 / n} \rightarrow p$ in norm.

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H)
$$

So $|T|^{1 / 2}(H)=|T|(H)$. Set $B=\{S \in L(H): S|T|(H) \subset|T|(H)\}$. So $|T|^{1 / 2} \in B$. It is obvious that $|T|^{1 / 2}$ is also one-to-one on $|T|(H)$.
Therefore $|T|^{1 / 2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}\left(|T|^{1 / 2}\right)$ or 0 is an isolated point in $\operatorname{sp}\left(|T|^{1 / 2}\right)$.
Let p be the range projection of $|T|$ in $\left(L(H)^{* *}\right.$. Then $|T|^{1 / n} \rightarrow p$ in norm. It follows that $p \in L(H)$.

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H) .
$$

So $|T|^{1 / 2}(H)=|T|(H)$. Set $B=\{S \in L(H): S|T|(H) \subset|T|(H)\}$. So $|T|^{1 / 2} \in B$. It is obvious that $|T|^{1 / 2}$ is also one-to-one on $|T|(H)$.
Therefore $|T|^{1 / 2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}\left(|T|^{1 / 2}\right)$ or 0 is an isolated point in $\operatorname{sp}\left(|T|^{1 / 2}\right)$.
Let p be the range projection of $|T|$ in $\left(L(H)^{* *}\right.$. Then $|T|^{1 / n} \rightarrow p$ in norm. It follows that $p \in L(H)$. Clearly, $p(H)=|T|(H)$ and $(1-p)(H)=\operatorname{ker} T$,

Let $T=V|T|$ be the polar decomposition in $B\left(H^{\sim}\right)$. Since $T(H)$ is closed and V is a partial isometry, $|T|(H)$ is closed. Notice that $|T| \in L(H)$. Since $|T|(H)$ is closed,

$$
|T|(H)=|T|^{1 / 2}\left(|T|^{1 / 2}(H)\right) \subset|T|^{1 / 2}(H) .
$$

So $|T|^{1 / 2}(H)=|T|(H)$. Set $B=\{S \in L(H): S|T|(H) \subset|T|(H)\}$. So $|T|^{1 / 2} \in B$. It is obvious that $|T|^{1 / 2}$ is also one-to-one on $|T|(H)$.
Therefore $|T|^{1 / 2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}\left(|T|^{1 / 2}\right)$ or 0 is an isolated point in $\operatorname{sp}\left(|T|^{1 / 2}\right)$.
Let p be the range projection of $|T|$ in $\left(L(H)^{* *}\right.$. Then $|T|^{1 / n} \rightarrow p$ in norm. It follows that $p \in L(H)$. Clearly, $p(H)=|T|(H)$ and $(1-p)(H)=\operatorname{ker} T$, whence $V \in L(H)$.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules. If there exists an invertible $\operatorname{map} T \in L\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules. If there exists an invertible map $T \in L\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.4 Let H_{1} and H_{2} be Hilbert A-modules such that $L\left(H_{1}\right)=B\left(H_{1}\right)$.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules. If there exists an invertible map $T \in L\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.4 Let H_{1} and H_{2} be Hilbert A-modules such that $L\left(H_{1}\right)=B\left(H_{1}\right)$. If there exists an invertible map $T \in B\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules. If there exists an invertible map $T \in L\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.4 Let H_{1} and H_{2} be Hilbert A-modules such that $L\left(H_{1}\right)=B\left(H_{1}\right)$. If there exists an invertible map $T \in B\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Proof.

Note that $T^{*} \in B\left(H_{2}, H_{1}^{\sharp}\right)$.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules. If there exists an invertible map $T \in L\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.4 Let H_{1} and H_{2} be Hilbert A-modules such that $L\left(H_{1}\right)=B\left(H_{1}\right)$. If there exists an invertible map $T \in B\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Proof.

Note that $T^{*} \in B\left(H_{2}, H_{1}^{\sharp}\right)$. Therefore $T^{*} T \in B\left(H_{1}, H_{1}^{\sharp}\right)$.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules. If there exists an invertible map $T \in L\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.4 Let H_{1} and H_{2} be Hilbert A-modules such that $L\left(H_{1}\right)=B\left(H_{1}\right)$. If there exists an invertible map $T \in B\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Proof.

Note that $T^{*} \in B\left(H_{2}, H_{1}^{\sharp}\right)$. Therefore $T^{*} T \in B\left(H_{1}, H_{1}^{\sharp}\right)$. Since $L\left(H_{1}\right)=B\left(H_{1}\right), M\left(K\left(H_{1}\right)\right)=L M\left(K\left(H_{1}\right)\right)$.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules. If there exists an invertible map $T \in L\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.4 Let H_{1} and H_{2} be Hilbert A-modules such that $L\left(H_{1}\right)=B\left(H_{1}\right)$. If there exists an invertible map $T \in B\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Proof.

Note that $T^{*} \in B\left(H_{2}, H_{1}^{\sharp}\right)$. Therefore $T^{*} T \in B\left(H_{1}, H_{1}^{\sharp}\right)$. Since $L\left(H_{1}\right)=B\left(H_{1}\right), M\left(K\left(H_{1}\right)\right)=L M\left(K\left(H_{1}\right)\right)$. It follows a theorem of L . G. Brown that $Q M\left(K\left(H_{1}\right)\right)=M\left(K\left(H_{1}\right)\right)$.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules. If there exists an invertible $\operatorname{map} T \in L\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.4 Let H_{1} and H_{2} be Hilbert A-modules such that $L\left(H_{1}\right)=B\left(H_{1}\right)$. If there exists an invertible map $T \in B\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Proof.

Note that $T^{*} \in B\left(H_{2}, H_{1}^{\sharp}\right)$. Therefore $T^{*} T \in B\left(H_{1}, H_{1}^{\sharp}\right)$. Since $L\left(H_{1}\right)=B\left(H_{1}\right), M\left(K\left(H_{1}\right)\right)=L M\left(K\left(H_{1}\right)\right)$. It follows a theorem of L . G. Brown that $Q M\left(K\left(H_{1}\right)\right)=M\left(K\left(H_{1}\right)\right)$. Thus, by Theorem 1.14, $B\left(H_{1}, H_{1}^{\sharp}\right)=L\left(H_{1}\right)$.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules. If there exists an invertible $\operatorname{map} T \in L\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.4 Let H_{1} and H_{2} be Hilbert A-modules such that $L\left(H_{1}\right)=B\left(H_{1}\right)$. If there exists an invertible map $T \in B\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Proof.

Note that $T^{*} \in B\left(H_{2}, H_{1}^{\sharp}\right)$. Therefore $T^{*} T \in B\left(H_{1}, H_{1}^{\sharp}\right)$. Since $L\left(H_{1}\right)=B\left(H_{1}\right), M\left(K\left(H_{1}\right)\right)=L M\left(K\left(H_{1}\right)\right)$. It follows a theorem of L . G. Brown that $Q M\left(K\left(H_{1}\right)\right)=M\left(K\left(H_{1}\right)\right)$. Thus, by Theorem 1.14, $B\left(H_{1}, H_{1}^{\sharp}\right)=L\left(H_{1}\right)$. So $T^{*} T \in L\left(H_{1}\right)$.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules. If there exists an invertible $\operatorname{map} T \in L\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.4 Let H_{1} and H_{2} be Hilbert A-modules such that $L\left(H_{1}\right)=B\left(H_{1}\right)$. If there exists an invertible map $T \in B\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Proof.

Note that $T^{*} \in B\left(H_{2}, H_{1}^{\sharp}\right)$. Therefore $T^{*} T \in B\left(H_{1}, H_{1}^{\sharp}\right)$. Since $L\left(H_{1}\right)=B\left(H_{1}\right), M\left(K\left(H_{1}\right)\right)=L M\left(K\left(H_{1}\right)\right)$. It follows a theorem of L . G. Brown that $Q M\left(K\left(H_{1}\right)\right)=M\left(K\left(H_{1}\right)\right)$. Thus, by Theorem 1.14, $B\left(H_{1}, H_{1}^{\sharp}\right)=L\left(H_{1}\right)$. So $T^{*} T \in L\left(H_{1}\right)$. It follows that $|T| \in L\left(H_{1}\right)$ which is invertible.

Corollary 2.3 Let H_{1} and H_{2} be Hilbert A-modules. If there exists an invertible $\operatorname{map} T \in L\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Corollary 2.4 Let H_{1} and H_{2} be Hilbert A-modules such that $L\left(H_{1}\right)=B\left(H_{1}\right)$. If there exists an invertible map $T \in B\left(H_{1}, H_{2}\right)$, then $H_{1} \cong H_{2}$.

Proof.

Note that $T^{*} \in B\left(H_{2}, H_{1}^{\sharp}\right)$. Therefore $T^{*} T \in B\left(H_{1}, H_{1}^{\sharp}\right)$. Since $L\left(H_{1}\right)=B\left(H_{1}\right), M\left(K\left(H_{1}\right)\right)=L M\left(K\left(H_{1}\right)\right)$. It follows a theorem of L . G. Brown that $Q M\left(K\left(H_{1}\right)\right)=M\left(K\left(H_{1}\right)\right)$. Thus, by Theorem 1.14, $B\left(H_{1}, H_{1}^{\sharp}\right)=L\left(H_{1}\right)$. So $T^{*} T \in L\left(H_{1}\right)$. It follows that $|T| \in L\left(H_{1}\right)$ which is invertible. By apply ing Lemma 2.2, $U=T|T|^{-1}$ gives the desired unitary.

Definition2.4 Let H be a Hilbert module.

Definition2.4 Let H be a Hilbert module. We say H is orthogonally complementary

Definition2.4 Let H be a Hilbert module. We say H is orthogonally complementary if any Hilbert module H_{1} containing H

Definition2.4 Let H be a Hilbert module. We say H is orthogonally complementary if any Hilbert module H_{1} containing H has an orthogonal decomposition:

Definition2.4 Let H be a Hilbert module. We say H is orthogonally complementary if any Hilbert module H_{1} containing H has an orthogonal decomposition:

$$
H_{1}=H \oplus H^{\perp} .
$$

Definition2.4 Let H be a Hilbert module. We say H is orthogonally complementary if any Hilbert module H_{1} containing H has an orthogonal decomposition:

$$
H_{1}=H \oplus H^{\perp} .
$$

Clearly, not all Hilbert modules are orthogonally complementary.

Definition2.4 Let H be a Hilbert module. We say H is orthogonally complementary if any Hilbert module H_{1} containing H has an orthogonal decomposition:

$$
H_{1}=H \oplus H^{\perp} .
$$

Clearly, not all Hilbert modules are orthogonally complementary. It is shown that if A is unital, then any orthogonal direct summand of A^{n},

Definition2.4 Let H be a Hilbert module. We say H is orthogonally complementary if any Hilbert module H_{1} containing H has an orthogonal decomposition:

$$
H_{1}=H \oplus H^{\perp} .
$$

Clearly, not all Hilbert modules are orthogonally complementary. It is shown that if A is unital, then any orthogonal direct summand of A^{n}, the direct sum of n copies of A, is orthogonally complementary.

Theorem 2.5 Let E be a full Hilbert A-module such that $L(E)=B(E)$.

Theorem 2.5 Let E be a full Hilbert A-module such that $L(E)=B(E)$. Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and $E \subset H$.

Theorem 2.5 Let E be a full Hilbert A-module such that $L(E)=B(E)$. Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and $E \subset H$. Let P be the bounded module map from H into E^{\sharp} defined by $P x(y)=\langle x, y\rangle$ for all $x \in H$ and $y \in E$.

Theorem 2.5 Let E be a full Hilbert A-module such that $L(E)=B(E)$. Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and $E \subset H$. Let P be the bounded module map from H into E^{\sharp} defined by $P x(y)=\langle x, y\rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$
T(z)=y(P x(z))=y\langle x, z\rangle \text { for all } z \in E
$$

Theorem 2.5 Let E be a full Hilbert A-module such that $L(E)=B(E)$. Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and $E \subset H$. Let P be the bounded module map from H into E^{\sharp} defined by $P x(y)=\langle x, y\rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$
T(z)=y(P x(z))=y\langle x, z\rangle \text { for all } z \in E
$$

Working in $B\left(E^{\sim}\right)$,

Theorem 2.5 Let E be a full Hilbert A-module such that $L(E)=B(E)$. Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and $E \subset H$. Let P be the bounded module map from H into E^{\sharp} defined by $P x(y)=\langle x, y\rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$
T(z)=y(P x(z))=y\langle x, z\rangle \text { for all } z \in E
$$

Working in $B\left(E^{\sim}\right)$, if necessary, we see that

$$
T^{*}(z)=P x\langle y, z\rangle \text { for all } z \in E
$$

Theorem 2.5 Let E be a full Hilbert A-module such that $L(E)=B(E)$. Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and $E \subset H$. Let P be the bounded module map from H into E^{\sharp} defined by $P x(y)=\langle x, y\rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$
T(z)=y(P x(z))=y\langle x, z\rangle \text { for all } z \in E
$$

Working in $B\left(E^{\sim}\right)$, if necessary, we see that

$$
T^{*}(z)=P \times\langle y, z\rangle \text { for all } z \in E
$$

Since $T \in B(E)=L(E), T^{*} \in L(E)$.

Theorem 2.5 Let E be a full Hilbert A-module such that $L(E)=B(E)$. Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and $E \subset H$. Let P be the bounded module map from H into E^{\sharp} defined by $P x(y)=\langle x, y\rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$
T(z)=y(P x(z))=y\langle x, z\rangle \text { for all } z \in E
$$

Working in $B\left(E^{\sim}\right)$, if necessary, we see that

$$
T^{*}(z)=P x\langle y, z\rangle \text { for all } z \in E
$$

Since $T \in B(E)=L(E), T^{*} \in L(E)$. Therefore $\operatorname{Px}\left(\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right) \in E$ for all $y_{i}, w_{i} \in E, 1 \leq i \leq m$ (for any $m \in \mathbb{N}$).

Theorem 2.5 Let E be a full Hilbert A-module such that $L(E)=B(E)$. Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and $E \subset H$. Let P be the bounded module map from H into E^{\sharp} defined by $P x(y)=\langle x, y\rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$
T(z)=y(P x(z))=y\langle x, z\rangle \text { for all } z \in E
$$

Working in $B\left(E^{\sim}\right)$, if necessary, we see that

$$
T^{*}(z)=P \times\langle y, z\rangle \text { for all } z \in E
$$

Since $T \in B(E)=L(E), T^{*} \in L(E)$. Therefore $P x\left(\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right) \in E$ for all $y_{i}, w_{i} \in E, 1 \leq i \leq m$ (for any $m \in \mathbb{N}$). Let $x=u\langle x, x\rangle^{1 / 2}$ be the polar decomposition of x in H^{\sim}.

Theorem 2.5 Let E be a full Hilbert A-module such that $L(E)=B(E)$. Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and $E \subset H$. Let P be the bounded module map from H into E^{\sharp} defined by $P x(y)=\langle x, y\rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$
T(z)=y(P x(z))=y\langle x, z\rangle \text { for all } z \in E
$$

Working in $B\left(E^{\sim}\right)$, if necessary, we see that

$$
T^{*}(z)=P \times\langle y, z\rangle \text { for all } z \in E
$$

Since $T \in B(E)=L(E), T^{*} \in L(E)$. Therefore $P x\left(\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right) \in E$ for all $y_{i}, w_{i} \in E, 1 \leq i \leq m$ (for any $m \in \mathbb{N}$). Let $x=u\langle x, x\rangle^{1 / 2}$ be the polar decomposition of x in H^{\sim}. With $\|z\| \leq 1$, we have

Theorem 2.5 Let E be a full Hilbert A-module such that $L(E)=B(E)$. Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and $E \subset H$. Let P be the bounded module map from H into E^{\sharp} defined by $P x(y)=\langle x, y\rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$
T(z)=y(P x(z))=y\langle x, z\rangle \text { for all } z \in E
$$

Working in $B\left(E^{\sim}\right)$, if necessary, we see that

$$
T^{*}(z)=P x\langle y, z\rangle \text { for all } z \in E
$$

Since $T \in B(E)=L(E), T^{*} \in L(E)$. Therefore $P x\left(\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right) \in E$ for all $y_{i}, w_{i} \in E, 1 \leq i \leq m$ (for any $m \in \mathbb{N}$). Let $x=u\langle x, x\rangle^{1 / 2}$ be the polar decomposition of x in H^{\sim}. With $\|z\| \leq 1$, we have

$$
\left\|\langle P x, z\rangle-\left\langle P x\left(\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right), z\right\rangle \leq\right\|\left(I-\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right)\langle x, x\rangle^{1 / 2} \|
$$

Proof:

Suppose that H is a Hilbert A-module and $E \subset H$. Let P be the bounded module map from H into E^{\sharp} defined by $P x(y)=\langle x, y\rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$
T(z)=y(P x(z))=y\langle x, z\rangle \text { for all } z \in E
$$

Working in $B\left(E^{\sim}\right)$, if necessary, we see that

$$
T^{*}(z)=P x\langle y, z\rangle \text { for all } z \in E
$$

Since $T \in B(E)=L(E), T^{*} \in L(E)$. Therefore $\operatorname{Px}\left(\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right) \in E$ for all $y_{i}, w_{i} \in E, 1 \leq i \leq m$ (for any $m \in \mathbb{N}$). Let $x=u\langle x, x\rangle^{1 / 2}$ be the polar decomposition of x in H^{\sim}. With $\|z\| \leq 1$, we have

$$
\left\|\langle P x, z\rangle-\left\langle P x\left(\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right), z\right\rangle \leq\right\|\left(I-\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right)\langle x, x\rangle^{1 / 2} \| .
$$

Proof:

Suppose that H is a Hilbert A-module and $E \subset H$. Let P be the bounded module map from H into E^{\sharp} defined by $P x(y)=\langle x, y\rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$
T(z)=y(P x(z))=y\langle x, z\rangle \text { for all } z \in E
$$

Working in $B\left(E^{\sim}\right)$, if necessary, we see that

$$
T^{*}(z)=P x\langle y, z\rangle \text { for all } z \in E
$$

Since $T \in B(E)=L(E), T^{*} \in L(E)$. Therefore $\operatorname{Px}\left(\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right) \in E$ for all $y_{i}, w_{i} \in E, 1 \leq i \leq m$ (for any $m \in \mathbb{N}$). Let $x=u\langle x, x\rangle^{1 / 2}$ be the polar decomposition of x in H^{\sim}. With $\|z\| \leq 1$, we have

$$
\left\|\langle P x, z\rangle-\left\langle P x\left(\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right), z\right\rangle \leq\right\|\left(I-\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle\right)\langle x, x\rangle^{1 / 2} \| .
$$

Since E is full and $P x\left(\sum_{i=1}^{m}\left\langle y_{i}, w_{i}\right\rangle \in E\right.$ for all $y_{i}, w_{i} \in E$, we conclude from the above inequalities that $P x \in E$ for all $x \in H$. Therefore $P \in B(H)$ and $H=(I-P) H \oplus E$. This completes the proof.

Corollary 2.6 Let A be a C^{*}-algebra such that $L M(A)=M(A)$

Corollary 2.6 Let A be a C^{*}-algebra such that $L M(A)=M(A)$ Then orthogonal direct summands of A^{n} are orthogonally complementary, where n is a positive integer.

Corollary 2.6 Let A be a C^{*}-algebra such that $L M(A)=M(A)$ Then orthogonal direct summands of A^{n} are orthogonally complementary, where n is a positive integer.

Definition2.7 Let H_{1} and H_{2} be Hilbert modules over a C^{*}-algebra A and $H_{1} \subset H_{2}$.

Corollary 2.6 Let A be a C^{*}-algebra such that $L M(A)=M(A)$ Then orthogonal direct summands of A^{n} are orthogonally complementary, where n is a positive integer.

Definition2.7 Let H_{1} and H_{2} be Hilbert modules over a C^{*}-algebra A and $H_{1} \subset H_{2}$. Let H be also a Hilbert A-module.

Corollary 2.6 Let A be a C^{*}-algebra such that $L M(A)=M(A)$ Then orthogonal direct summands of A^{n} are orthogonally complementary, where n is a positive integer.

Definition2.7 Let H_{1} and H_{2} be Hilbert modules over a C^{*}-algebra A and $H_{1} \subset H_{2}$. Let H be also a Hilbert A-module. Suppose that there is a bounded module map $T: H_{1} \rightarrow H$.

Corollary 2.6 Let A be a C^{*}-algebra such that $L M(A)=M(A)$ Then orthogonal direct summands of A^{n} are orthogonally complementary, where n is a positive integer.

Definition2.7 Let H_{1} and H_{2} be Hilbert modules over a C^{*}-algebra A and $H_{1} \subset H_{2}$. Let H be also a Hilbert A-module. Suppose that there is a bounded module map $T: H_{1} \rightarrow H$. Does there exists a module map $\tilde{T}: H_{2} \rightarrow H$ such that $\left.\tilde{T}\right|_{H_{1}}=T$ and $\|\tilde{T}\|=\|T\|$?.

In other words, we are search a map \tilde{T} with $\|\tilde{T}\|=\|T\|$ such that the following commutative diagram commutes:

Let C_{1} be category whose objects are Hilbert A-modules and morphisms are contractive module maps with adjoints. We would like to identify those injective objects.

Lemma 2.8 Let H be a Hilbert module over a C*-algebra A

Lemma 2.8 Let H be a Hilbert module over a C^{*}-algebra A and H_{0} a closed submodule of H.

Lemma 2.8 Let H be a Hilbert module over a C^{*}-algebra A and H_{0} a closed submodule of H. Suppose that $T \in K\left(H_{0}\right)$,

Lemma 2.8 Let H be a Hilbert module over a C^{*}-algebra A and H_{0} a closed submodule of H. Suppose that $T \in K\left(H_{0}\right)$, then there is $\tilde{T} \in K(H)$ such that $\|\tilde{T}\|=\|T\|$ and $\left.T\right|_{H_{0}}=T$.

Lemma 2.8 Let H be a Hilbert module over a C^{*}-algebra A and H_{0} a closed submodule of H. Suppose that $T \in K\left(H_{0}\right)$, then there is $\tilde{T} \in K(H)$ such that $\|\tilde{T}\|=\|T\|$ and $\left.T\right|_{H_{0}}=T$. Consequently, $K\left(H_{0}\right)$ may be regarded as a hereditary C^{*}-subalgebra of $K(H)$.

Lemma 2.8 Let H be a Hilbert module over a C^{*}-algebra A and H_{0} a closed submodule of H. Suppose that $T \in K\left(H_{0}\right)$, then there is $\tilde{T} \in K(H)$ such that $\|\tilde{T}\|=\|T\|$ and $\left.T\right|_{H_{0}}=T$. Consequently, $K\left(H_{0}\right)$ may be regarded as a hereditary C^{*}-subalgebra of $K(H)$.

Theorem 2.9 Let A be a C^{*}-algebra and H be a Hilbert A-module. Then H is injective in the category C_{1} if and only if H is orthogonal complementary.

Proof:

We first assume that H is orthogonally complementary.

Proof:

We first assume that H is orthogonally complementary. Let H_{0} be a closed submodule of a Hilbert A-module H_{1} and T a bounded module map in $L\left(H_{0}, H\right)$.

Proof:

We first assume that H is orthogonally complementary. Let H_{0} be a closed submodule of a Hilbert A-module H_{1} and T a bounded module map in $L\left(H_{0}, H\right)$. Set $H_{2}=H_{0} \oplus H$ and define $T_{\lambda}\left(h_{0} \oplus h\right)=0 \oplus T\left(h_{0}\right)+\lambda h$ for a;; $h_{0} \in H_{0}, h \in H$, where $0<\lambda<1$.

Proof:

We first assume that H is orthogonally complementary. Let H_{0} be a closed submodule of a Hilbert A-module H_{1} and T a bounded module map in $L\left(H_{0}, H\right)$. Set $H_{2}=H_{0} \oplus H$ and define $T_{\lambda}\left(h_{0} \oplus h\right)=0 \oplus T\left(h_{0}\right)+\lambda h$ for a;; $h_{0} \in H_{0}, h \in H$, where $0<\lambda<1$. Clearly $T_{\lambda} \in L\left(H_{2}\right)$ and

Proof:

We first assume that H is orthogonally complementary. Let H_{0} be a closed submodule of a Hilbert A-module H_{1} and T a bounded module map in $L\left(H_{0}, H\right)$. Set $H_{2}=H_{0} \oplus H$ and define $T_{\lambda}\left(h_{0} \oplus h\right)=0 \oplus T\left(h_{0}\right)+\lambda h$ for a;; $h_{0} \in H_{0}, h \in H$, where $0<\lambda<1$. Clearly $T_{\lambda} \in L\left(H_{2}\right)$ and

$$
\left\|T_{\lambda}\right\| \leq\left(\|T\|^{2}+\lambda^{2}\right)^{1 / 2}
$$

Proof:

We first assume that H is orthogonally complementary. Let H_{0} be a closed submodule of a Hilbert A-module H_{1} and T a bounded module map in $L\left(H_{0}, H\right)$. Set $H_{2}=H_{0} \oplus H$ and define $T_{\lambda}\left(h_{0} \oplus h\right)=0 \oplus T\left(h_{0}\right)+\lambda h$ for a;; $h_{0} \in H_{0}, h \in H$, where $0<\lambda<1$. Clearly $T_{\lambda} \in L\left(H_{2}\right)$ and

$$
\left\|T_{\lambda}\right\| \leq\left(\|T\|^{2}+\lambda^{2}\right)^{1 / 2}
$$

Moreover, T_{λ} is surjective.

Proof:

We first assume that H is orthogonally complementary. Let H_{0} be a closed submodule of a Hilbert A-module H_{1} and T a bounded module map in $L\left(H_{0}, H\right)$. Set $H_{2}=H_{0} \oplus H$ and define $T_{\lambda}\left(h_{0} \oplus h\right)=0 \oplus T\left(h_{0}\right)+\lambda h$ for a;; $h_{0} \in H_{0}, h \in H$, where $0<\lambda<1$. Clearly $T_{\lambda} \in L\left(H_{2}\right)$ and

$$
\left\|T_{\lambda}\right\| \leq\left(\|T\|^{2}+\lambda^{2}\right)^{1 / 2}
$$

Moreover, T_{λ} is surjective. It follows from Theorem 2.2 that

$$
H_{2}=\operatorname{ker} T \oplus\left|T_{\lambda}\right|\left(H_{2}\right)
$$

Furthermore, T_{λ} is one-to-one on $\left|T_{\lambda}\right|\left(H_{2}\right)$ and maps $\left|T_{\lambda}\right|\left(H_{2}\right)$ onto $0 \oplus H$. By Cor. 2.3, $\left|T_{\lambda}\right|\left(H_{2}\right) \cong H$.

Proof:

We first assume that H is orthogonally complementary. Let H_{0} be a closed submodule of a Hilbert A-module H_{1} and T a bounded module map in $L\left(H_{0}, H\right)$. Set $H_{2}=H_{0} \oplus H$ and define $T_{\lambda}\left(h_{0} \oplus h\right)=0 \oplus T\left(h_{0}\right)+\lambda h$ for a;; $h_{0} \in H_{0}, h \in H$, where $0<\lambda<1$. Clearly $T_{\lambda} \in L\left(H_{2}\right)$ and

$$
\left\|T_{\lambda}\right\| \leq\left(\|T\|^{2}+\lambda^{2}\right)^{1 / 2}
$$

Moreover, T_{λ} is surjective. It follows from Theorem 2.2 that

$$
H_{2}=\operatorname{ker} T \oplus\left|T_{\lambda}\right|\left(H_{2}\right)
$$

Furthermore, T_{λ} is one-to-one on $\left|T_{\lambda}\right|\left(H_{2}\right)$ and maps $\left|T_{\lambda}\right|\left(H_{2}\right)$ onto $0 \oplus H$. By Cor. 2.3, $\left|T_{\lambda}\right|\left(H_{2}\right) \cong H$. So $\mid T_{\lambda}\left(H_{2}\right)$ is orthogonally complementary.

Proof:

We first assume that H is orthogonally complementary. Let H_{0} be a closed submodule of a Hilbert A-module H_{1} and T a bounded module map in $L\left(H_{0}, H\right)$. Set $H_{2}=H_{0} \oplus H$ and define $T_{\lambda}\left(h_{0} \oplus h\right)=0 \oplus T\left(h_{0}\right)+\lambda h$ for a;; $h_{0} \in H_{0}, h \in H$, where $0<\lambda<1$. Clearly $T_{\lambda} \in L\left(H_{2}\right)$ and

$$
\left\|T_{\lambda}\right\| \leq\left(\|T\|^{2}+\lambda^{2}\right)^{1 / 2}
$$

Moreover, T_{λ} is surjective. It follows from Theorem 2.2 that

$$
H_{2}=\operatorname{ker} T \oplus\left|T_{\lambda}\right|\left(H_{2}\right)
$$

Furthermore, T_{λ} is one-to-one on $\left|T_{\lambda}\right|\left(H_{2}\right)$ and maps $\left|T_{\lambda}\right|\left(H_{2}\right)$ onto $0 \oplus H$. By Cor. 2.3, $\left|T_{\lambda}\right|\left(H_{2}\right) \cong H$. So $\mid T_{\lambda}\left(H_{2}\right)$ is orthogonally complementary. Set $H_{3}=H_{1} \oplus H$

Proof:

We first assume that H is orthogonally complementary. Let H_{0} be a closed submodule of a Hilbert A-module H_{1} and T a bounded module map in $L\left(H_{0}, H\right)$. Set $H_{2}=H_{0} \oplus H$ and define $T_{\lambda}\left(h_{0} \oplus h\right)=0 \oplus T\left(h_{0}\right)+\lambda h$ for a;; $h_{0} \in H_{0}, h \in H$, where $0<\lambda<1$. Clearly $T_{\lambda} \in L\left(H_{2}\right)$ and

$$
\left\|T_{\lambda}\right\| \leq\left(\|T\|^{2}+\lambda^{2}\right)^{1 / 2}
$$

Moreover, T_{λ} is surjective. It follows from Theorem 2.2 that

$$
H_{2}=\operatorname{ker} T \oplus\left|T_{\lambda}\right|\left(H_{2}\right)
$$

Furthermore, T_{λ} is one-to-one on $\left|T_{\lambda}\right|\left(H_{2}\right)$ and maps $\left|T_{\lambda}\right|\left(H_{2}\right)$ onto $0 \oplus H$. By Cor. 2.3, $\left|T_{\lambda}\right|\left(H_{2}\right) \cong H$. So $\mid T_{\lambda}\left(H_{2}\right)$ is orthogonally complementary. Set $H_{3}=H_{1} \oplus H$ then

$$
H_{3} \supset H_{2} \supset\left|T_{\lambda}\right|\left(H_{2}\right) .
$$

Therefore, we may write

$$
H_{3}=H_{4} \oplus\left|T_{\lambda}\right|\left(H_{2}\right) .
$$

Therefore, we may write

$$
H_{3}=H_{4} \oplus\left|T_{\lambda}\right|\left(H_{2}\right) .
$$

for some closed submodule H_{4}.

Therefore, we may write

$$
H_{3}=H_{4} \oplus\left|T_{\lambda}\right|\left(H_{2}\right) .
$$

for some closed submodule H_{4}. We define \tilde{T}_{λ} in $L\left(H_{3}\right)$ by

$$
\tilde{T}_{\lambda}\left(h_{4} \oplus h\right)=T_{\lambda}(h) \text { for all } h_{4} \in H_{4} \text { and } h \in\left|T_{\lambda}\right|\left(H_{2}\right)
$$

Therefore, we may write

$$
H_{3}=H_{4} \oplus\left|T_{\lambda}\right|\left(H_{2}\right) .
$$

for some closed submodule H_{4}. We define \tilde{T}_{λ} in $L\left(H_{3}\right)$ by

$$
\tilde{T}_{\lambda}\left(h_{4} \oplus h\right)=T_{\lambda}(h) \text { for all } h_{4} \in H_{4} \text { and } h \in\left|T_{\lambda}\right|\left(H_{2}\right)
$$

Clearly $\left.\tilde{T}_{\lambda}\right|_{H}=T_{\lambda}$ and $\|\tilde{T}\|=\|T\|$.

Therefore, we may write

$$
H_{3}=H_{4} \oplus\left|T_{\lambda}\right|\left(H_{2}\right)
$$

for some closed submodule H_{4}. We define \tilde{T}_{λ} in $L\left(H_{3}\right)$ by

$$
\tilde{T}_{\lambda}\left(h_{4} \oplus h\right)=T_{\lambda}(h) \text { for all } h_{4} \in H_{4} \text { and } h \in\left|T_{\lambda}\right|\left(H_{2}\right)
$$

Clearly $\left.\tilde{T}_{\lambda}\right|_{H}=T_{\lambda}$ and $\|\tilde{T}\|=\|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in M\left(K\left(H_{3}\right)\right)$.

Therefore, we may write

$$
H_{3}=H_{4} \oplus\left|T_{\lambda}\right|\left(H_{2}\right) .
$$

for some closed submodule H_{4}. We define \tilde{T}_{λ} in $L\left(H_{3}\right)$ by

$$
\tilde{T}_{\lambda}\left(h_{4} \oplus h\right)=T_{\lambda}(h) \text { for all } h_{4} \in H_{4} \text { and } h \in\left|T_{\lambda}\right|\left(H_{2}\right) .
$$

Clearly $\left.\tilde{T}_{\lambda}\right|_{H}=T_{\lambda}$ and $\|\tilde{T}\|=\|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in M\left(K\left(H_{3}\right)\right)$. It follows from 2.8 that $K\left(H_{2}\right)$ is a hereditary C*-subalgebra of $K\left(H_{3}\right)$.

Therefore, we may write

$$
H_{3}=H_{4} \oplus\left|T_{\lambda}\right|\left(H_{2}\right) .
$$

for some closed submodule H_{4}. We define \tilde{T}_{λ} in $L\left(H_{3}\right)$ by

$$
\tilde{T}_{\lambda}\left(h_{4} \oplus h\right)=T_{\lambda}(h) \text { for all } h_{4} \in H_{4} \text { and } h \in\left|T_{\lambda}\right|\left(H_{2}\right)
$$

Clearly $\left.\tilde{T}_{\lambda}\right|_{H}=T_{\lambda}$ and $\|\tilde{T}\|=\|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in M\left(K\left(H_{3}\right)\right)$. It follows from 2.8 that $K\left(H_{2}\right)$ is a hereditary $C *$-subalgebra of $K\left(H_{3}\right)$. Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$.

Therefore, we may write

$$
H_{3}=H_{4} \oplus\left|T_{\lambda}\right|\left(H_{2}\right)
$$

for some closed submodule H_{4}. We define \tilde{T}_{λ} in $L\left(H_{3}\right)$ by

$$
\tilde{T}_{\lambda}\left(h_{4} \oplus h\right)=T_{\lambda}(h) \text { for all } h_{4} \in H_{4} \text { and } h \in\left|T_{\lambda}\right|\left(H_{2}\right)
$$

Clearly $\left.\tilde{T}_{\lambda}\right|_{H}=T_{\lambda}$ and $\|\tilde{T}\|=\|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in M\left(K\left(H_{3}\right)\right)$. It follows from 2.8 that $K\left(H_{2}\right)$ is a hereditary C*-subalgebra of $K\left(H_{3}\right)$. Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$.

Therefore, we may write

$$
H_{3}=H_{4} \oplus\left|T_{\lambda}\right|\left(H_{2}\right)
$$

for some closed submodule H_{4}. We define \tilde{T}_{λ} in $L\left(H_{3}\right)$ by

$$
\tilde{T}_{\lambda}\left(h_{4} \oplus h\right)=T_{\lambda}(h) \text { for all } h_{4} \in H_{4} \text { and } h \in\left|T_{\lambda}\right|\left(H_{2}\right)
$$

Clearly $\left.\tilde{T}_{\lambda}\right|_{H}=T_{\lambda}$ and $\|\tilde{T}\|=\|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in M\left(K\left(H_{3}\right)\right)$. It follows from 2.8 that $K\left(H_{2}\right)$ is a hereditary C*-subalgebra of $K\left(H_{3}\right)$. Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$.

Therefore, we may write

$$
H_{3}=H_{4} \oplus\left|T_{\lambda}\right|\left(H_{2}\right)
$$

for some closed submodule H_{4}. We define \tilde{T}_{λ} in $L\left(H_{3}\right)$ by

$$
\tilde{T}_{\lambda}\left(h_{4} \oplus h\right)=T_{\lambda}(h) \text { for all } h_{4} \in H_{4} \text { and } h \in\left|T_{\lambda}\right|\left(H_{2}\right)
$$

Clearly $\left.\tilde{T}_{\lambda}\right|_{H}=T_{\lambda}$ and $\|\tilde{T}\|=\|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in M\left(K\left(H_{3}\right)\right)$. It follows from 2.8 that $K\left(H_{2}\right)$ is a hereditary C*-subalgebra of $K\left(H_{3}\right)$. Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0,
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$. Put $q=(1-\bar{p})$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$. Put $q=(1-\bar{p})$. Note that q is an open projection.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$. Put $q=(1-\bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*} k^{2} T_{\lambda}$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$. Put $q=(1-\bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*} k^{2} T_{\lambda}$. Then $e q=0$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$. Put $q=(1-\bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*} k^{2} T_{\lambda}$. Then $e q=0$. Since p is open, it follows follows that $e \leq 1-\bar{q}$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$. Put $q=(1-\bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*} k^{2} T_{\lambda}$. Then $e q=0$. Since p is open, it follows follows that $e \leq 1-\bar{q}$. Hence $e \leq e-e \bar{q} e$,

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$. Put $q=(1-\bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*} k^{2} T_{\lambda}$. Then $e q=0$. Since p is open, it follows follows that $e \leq 1-\bar{q}$. Hence $e \leq e-e \bar{q} e$, or $e \bar{q} e=0$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$. Put $q=(1-\bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*} k^{2} T_{\lambda}$. Then $e q=0$. Since p is open, it follows follows that $e \leq 1-\bar{q}$. Hence $e \leq e-e \bar{q} e$, or $e \bar{q} e=0$. Hence $e \bar{q}=0$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$. Put $q=(1-\bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*} k^{2} T_{\lambda}$. Then $e q=0$. Since p is open, it follows follows that $e \leq 1-\bar{q}$. Hence $e \leq e-e \bar{q} e$, or $e \bar{q} e=0$. Hence $e \bar{q}=0$. It follows that $e(1-p)=0$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$. Put $q=(1-\bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*} k^{2} T_{\lambda}$. Then $e q=0$. Since p is open, it follows follows that $e \leq 1-\bar{q}$. Hence $e \leq e-e \bar{q} e$, or $e \bar{q} e=0$. Hence $e \bar{q}=0$. It follows that $e(1-p)=0$. Thus $k \tilde{T}_{\lambda}(1-p)=0$ for all $k \in K\left(H_{2}\right)$.

Let p be the open projection in $K\left(H_{3}\right)^{* *}$ corresponding to $K\left(H_{2}\right)$. If $h \in H_{2}^{\perp}=\left\{h \in H_{3}:\langle h, x\rangle=0\right.$ for all $\left.x \in H_{2}\right\}$, then $\tilde{T}_{\lambda}(h)=0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p})=0$. For any $k \in K\left(H_{3}\right)$,

$$
k \tilde{T}_{\lambda}(1-\bar{p})=0
$$

since $\tilde{T}_{\lambda} \in_{M}\left(K\left(H_{3}\right)\right)$ and $k \tilde{T}_{\lambda} \in K\left(H_{3}\right)$. Put $q=(1-\bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*} k^{2} T_{\lambda}$. Then $e q=0$. Since p is open, it follows follows that $e \leq 1-\bar{q}$. Hence $e \leq e-e \bar{q} e$, or $e \bar{q} e=0$. Hence $e \bar{q}=0$. It follows that $e(1-p)=0$. Thus $k \tilde{T}_{\lambda}(1-p)=0$ for all $k \in K\left(H_{2}\right)$. It follows that $\tilde{T}_{\lambda}(1-p)=0$.

For any $k_{1} \in K\left(H_{2}\right), h \in H_{2}, k_{1}(h) \in H_{2}$, and

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) k_{1}(h)\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}(h)\right\| .
$$

For any $k_{1} \in K\left(H_{2}\right), h \in H_{2}, k_{1}(h) \in H_{2}$, and

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) k_{1}(h)\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}(h)\right\| .
$$

Therefore

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}\right\|
$$

for any $k_{3} \in K\left(H_{2}\right)$.

For any $k_{1} \in K\left(H_{2}\right), h \in H_{2}, k_{1}(h) \in H_{2}$, and

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) k_{1}(h)\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}(h)\right\| .
$$

Therefore

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}\right\|
$$

for any $k_{3} \in K\left(H_{2}\right)$. Thus

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) p\right\|<\left|\lambda-\lambda^{\prime}\right| .
$$

For any $k_{1} \in K\left(H_{2}\right), h \in H_{2}, k_{1}(h) \in H_{2}$, and

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) k_{1}(h)\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}(h)\right\| .
$$

Therefore

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}\right\|
$$

for any $k_{3} \in K\left(H_{2}\right)$. Thus

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) p\right\|<\left|\lambda-\lambda^{\prime}\right| .
$$

Since $\tilde{T}_{\lambda}(1-p)=0$,

For any $k_{1} \in K\left(H_{2}\right), h \in H_{2}, k_{1}(h) \in H_{2}$, and

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) k_{1}(h)\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}(h)\right\| .
$$

Therefore

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}\right\|
$$

for any $k_{3} \in K\left(H_{2}\right)$. Thus

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) p\right\|<\left|\lambda-\lambda^{\prime}\right| .
$$

Since $\tilde{T}_{\lambda}(1-p)=0$, we obtain that

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|
$$

For any $k_{1} \in K\left(H_{2}\right), h \in H_{2}, k_{1}(h) \in H_{2}$, and

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) k_{1}(h)\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}(h)\right\| .
$$

Therefore

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}\right\|
$$

for any $k_{3} \in K\left(H_{2}\right)$. Thus

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) p\right\|<\left|\lambda-\lambda^{\prime}\right| .
$$

Since $\tilde{T}_{\lambda}(1-p)=0$, we obtain that

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|
$$

Set $\tilde{T}=\lim _{\lambda \rightarrow 0} \tilde{T}_{\lambda}$.

For any $k_{1} \in K\left(H_{2}\right), h \in H_{2}, k_{1}(h) \in H_{2}$, and

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) k_{1}(h)\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}(h)\right\| .
$$

Therefore

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}\right\|
$$

for any $k_{3} \in K\left(H_{2}\right)$. Thus

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) p\right\|<\left|\lambda-\lambda^{\prime}\right| .
$$

Since $\tilde{T}_{\lambda}(1-p)=0$, we obtain that

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|
$$

Set $\tilde{T}=\lim _{\lambda \rightarrow 0} \tilde{T}_{\lambda}$. So $\tilde{T} \in L\left(H_{3}\right)$ and $\|\tilde{T}\|=\lim _{\lambda}\left\|\tilde{T}_{\lambda}\right\|=\|T\|$.

For any $k_{1} \in K\left(H_{2}\right), h \in H_{2}, k_{1}(h) \in H_{2}$, and

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) k_{1}(h)\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}(h)\right\| .
$$

Therefore

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}\right\|
$$

for any $k_{3} \in K\left(H_{2}\right)$. Thus

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) p\right\|<\left|\lambda-\lambda^{\prime}\right| .
$$

Since $\tilde{T}_{\lambda}(1-p)=0$, we obtain that

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|
$$

Set $\tilde{T}=\lim _{\lambda \rightarrow 0} \tilde{T}_{\lambda}$. So $\tilde{T} \in L\left(H_{3}\right)$ and $\|\tilde{T}\|=\lim _{\lambda}\left\|\tilde{T}_{\lambda}\right\|=\|T\|$. Since $\left.\tilde{T}_{\lambda}\right|_{H_{0}}=T$ (if we identify H with $0 \oplus H$).

For any $k_{1} \in K\left(H_{2}\right), h \in H_{2}, k_{1}(h) \in H_{2}$, and

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) k_{1}(h)\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}(h)\right\| .
$$

Therefore

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}\right\|
$$

for any $k_{3} \in K\left(H_{2}\right)$. Thus

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) p\right\|<\left|\lambda-\lambda^{\prime}\right| .
$$

Since $\tilde{T}_{\lambda}(1-p)=0$, we obtain that

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|
$$

Set $\tilde{T}=\lim _{\lambda \rightarrow 0} \tilde{T}_{\lambda}$. So $\tilde{T} \in L\left(H_{3}\right)$ and $\|\tilde{T}\|=\lim _{\lambda}\left\|\tilde{T}_{\lambda}\right\|=\|\underset{\tilde{T}}{T}\|$. Since $\left.\tilde{T}_{\lambda}\right|_{H_{0}}=T$ (if we identify H with $0 \oplus H$). We conclude $\tilde{T}_{H_{0}}=T$ and $\left\|\left.\tilde{T}\right|_{H_{1}}\right\|=\|T\|$.

For any $k_{1} \in K\left(H_{2}\right), h \in H_{2}, k_{1}(h) \in H_{2}$, and

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) k_{1}(h)\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}(h)\right\| .
$$

Therefore

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|\left\|k_{1}\right\|
$$

for any $k_{3} \in K\left(H_{2}\right)$. Thus

$$
\left\|\left(\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right) p\right\|<\left|\lambda-\lambda^{\prime}\right| .
$$

Since $\tilde{T}_{\lambda}(1-p)=0$, we obtain that

$$
\left\|\tilde{T}_{\lambda}-\tilde{T}_{\lambda^{\prime}}\right\| \leq\left|\lambda-\lambda^{\prime}\right|
$$

Set $\tilde{T}=\lim _{\lambda \rightarrow 0} \tilde{T}_{\lambda}$. So $\tilde{T} \in L\left(H_{3}\right)$ and $\|\tilde{T}\|=\lim _{\lambda}\left\|\tilde{T}_{\lambda}\right\|=\|\underset{\tilde{T}}{T}\|$. Since $\left.\tilde{T}_{\lambda}\right|_{H_{0}}=T$ (if we identify H with $0 \oplus H$). We conclude $\tilde{T}_{H_{0}}=T$ and $\left\|\left.\tilde{T}\right|_{H_{1}}\right\|=\|T\|$. This shows that H is injective in the category C_{1}.

For the converse,

For the converse, we assume that H is injective in the category C_{1}.

For the converse, we assume that H is injective in the category C_{1}. Suppose that E is a Hilbert A-module containing H as a closed submodule.

For the converse, we assume that H is injective in the category C_{1}. Suppose that E is a Hilbert A-module containing H as a closed submodule. Let $\iota: H \rightarrow H$ be the identity map.

For the converse, we assume that H is injective in the category C_{1}. Suppose that E is a Hilbert A-module containing H as a closed submodule. Let $\iota: H \rightarrow H$ be the identity map. Since H is injective in C_{1} there is $\tilde{\iota} \in L(E, H)$ such that $\left.\tilde{\imath}\right|_{H}=\iota$ and $\|\tilde{\iota}\|=\|\iota\|$.

For the converse, we assume that H is injective in the category C_{1}. Suppose that E is a Hilbert A-module containing H as a closed submodule. Let $\iota: H \rightarrow H$ be the identity map. Since H is injective in C_{1} there is $\tilde{\iota} \in L(E, H)$ such that $\left.\tilde{\iota}\right|_{H}=\iota$ and $\|\tilde{\iota}\|=\|\iota\|$. It is then easily checked that $\left(\tilde{\iota}^{*}\right)(\tilde{\iota})$ is a projection in $L(E)$ and $\left.\left(\tilde{\iota}^{*}\right)(\tilde{\iota})\right|_{H}=\iota$.

For the converse, we assume that H is injective in the category C_{1}. Suppose that E is a Hilbert A-module containing H as a closed submodule. Let $\iota: H \rightarrow H$ be the identity map. Since H is injective in C_{1} there is $\tilde{\iota} \in L(E, H)$ such that $\left.\tilde{\imath}\right|_{H}=\iota$ and $\|\tilde{\iota}\|=\|\iota\|$. It is then easily checked that $\left(\tilde{\iota}^{*}\right)(\tilde{\iota})$ is a projection in $L(E)$ and $\left.\left(\tilde{\iota}^{*}\right)(\tilde{\iota})\right|_{H}=\iota$. This implies that H is an orthogonal direct summand of E.

For the converse, we assume that H is injective in the category C_{1}. Suppose that E is a Hilbert A-module containing H as a closed submodule. Let $\iota: H \rightarrow H$ be the identity map. Since H is injective in C_{1} there is $\tilde{\iota} \in L(E, H)$ such that $\left.\tilde{\imath}\right|_{H}=\iota$ and $\|\tilde{\iota}\|=\|\iota\|$. It is then easily checked that $\left(\tilde{\iota}^{*}\right)(\tilde{\iota})$ is a projection in $L(E)$ and $\left.\left(\tilde{\iota}^{*}\right)(\tilde{\iota})\right|_{H}=\iota$. This implies that H is an orthogonal direct summand of E. This completes the proof.

Theorem 2.10 Let A be a σ-unital C^{*}-algebra.

Theorem 2.10 Let A be a σ-unital C^{*}-algebra. Then the following are equivalent:

Theorem 2.10 Let A be a σ-unital C^{*}-algebra. Then the following are equivalent:
(1) $L M(A)=M(A)$;

Theorem 2.10 Let A be a σ-unital C^{*}-algebra. Then the following are equivalent:
(1) $L M(A)=M(A)$;
(2) A is orthogonally complementary as a Hubert A-module;

Theorem 2.10 Let A be a σ-unital C^{*}-algebra. Then the following are equivalent:
(1) $L M(A)=M(A)$;
(2) A is orthogonally complementary as a Hubert A-module; (3) A is injective as a Hilbert A-module in the category C;

Theorem 2.10 Let A be a σ-unital C^{*}-algebra. Then the following are equivalent:
(1) $L M(A)=M(A)$;
(2) A is orthogonally complementary as a Hubert A-module; (3) A is injective as a Hilbert A-module in the category C;
(4) For any closed right ideal R of A and $T \in L(R, A)$,

Theorem 2.10 Let A be a σ-unital C^{*}-algebra. Then the following are equivalent:
(1) $L M(A)=M(A)$;
(2) A is orthogonally complementary as a Hubert A-module; (3) A is injective as a Hilbert A-module in the category C;
(4) For any closed right ideal R of A and $T \in L(R, A)$, there is $\tilde{T} \in M(A)$ such that $\left.\tilde{T}\right|_{R}=T$ and $\|\tilde{T}\|=\|T\|$.

Theorem 2.10 Let A be a σ-unital C^{*}-algebra. Then the following are equivalent:
(1) $L M(A)=M(A)$;
(2) A is orthogonally complementary as a Hubert A-module;
(3) A is injective as a Hilbert A-module in the category C;
(4) For any closed right ideal R of A and $T \in L(R, A)$, there is $\tilde{T} \in M(A)$ such that $\left.\tilde{T}\right|_{R}=T$ and $\|\tilde{T}\|=\|T\|$.

It should be noted that for the implications $(1) \Rightarrow(2)(2) \Leftrightarrow(3) \Rightarrow$ (4) we do not need to assume that A is σ-unital.
(a) Every unital C^{*}-algebra satisfies the conditions.
(a) Every unital C^{*}-algebra satisfies the conditions. (b) Every commutative C^{*}-algebra satisfies the conditions (I)-(4).
(a) Every unital C^{*}-algebra satisfies the conditions.
(b) Every commutative C^{*}-algebra satisfies the conditions (I)-(4).
(c) Let B be a C^{*}-algebra such that $L M(B)=M(B)$ and c_{0} be the C^{*}-algebra of sequences of complex numbers which converge to zero.
(a) Every unital C^{*}-algebra satisfies the conditions.
(b) Every commutative C^{*}-algebra satisfies the conditions (1)-(4).
(c) Let B be a C^{*}-algebra such that $L M(B)=M(B)$ and c_{0} be the C^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_{0} \otimes B$ satisfies the conditions (1)-(4).
(a) Every unital C^{*}-algebra satisfies the conditions.
(b) Every commutative C^{*}-algebra satisfies the conditions (I)-(4).
(c) Let B be a C^{*}-algebra such that $L M(B)=M(B)$ and c_{0} be the C^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_{0} \otimes B$ satisfies the conditions (I)-(4).
(d) Let B be a unital C^{*}-algebra and X a locally compact Hausdorff space.
(a) Every unital C^{*}-algebra satisfies the conditions.
(b) Every commutative C^{*}-algebra satisfies the conditions (I)-(4).
(c) Let B be a C^{*}-algebra such that $L M(B)=M(B)$ and c_{0} be the C^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_{0} \otimes B$ satisfies the conditions (I)-(4).
(d) Let B be a unital C^{*}-algebra and X a locally compact Hausdorff space. Then $C_{0}(X) \otimes B$ satisfies the conditions (1)-(4).
(a) Every unital C^{*}-algebra satisfies the conditions.
(b) Every commutative C^{*}-algebra satisfies the conditions (I)-(4).
(c) Let B be a C^{*}-algebra such that $L M(B)=M(B)$ and c_{0} be the C^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_{0} \otimes B$ satisfies the conditions (I)-(4).
(d) Let B be a unital C^{*}-algebra and X a locally compact Hausdorff space. Then $C_{0}(X) \otimes B$ satisfies the conditions (1)-(4).
(e) We will see that if $L M(B)=M(B)$, then $A=M_{n}(B)$, the C^{*}-algebra of $n \times n$ matrices over B, satisfies the conditions (1)-(4).
(a) Every unital C^{*}-algebra satisfies the conditions.
(b) Every commutative C^{*}-algebra satisfies the conditions (I)-(4).
(c) Let B be a C^{*}-algebra such that $L M(B)=M(B)$ and c_{0} be the C^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_{0} \otimes B$ satisfies the conditions (I)-(4).
(d) Let B be a unital C^{*}-algebra and X a locally compact Hausdorff space. Then $C_{0}(X) \otimes B$ satisfies the conditions (I)-(4).
(e) We will see that if $L M(B)=M(B)$, then $A=M_{n}(B)$, the C^{*}-algebra of $n \times n$ matrices over B, satisfies the conditions (1)-(4).
(f) The only stable C^{*}-algebra satisfying the conditions (I)-(4) are those dual C^{*}-algebras.
(a) Every unital C^{*}-algebra satisfies the conditions.
(b) Every commutative C^{*}-algebra satisfies the conditions (I)-(4).
(c) Let B be a C^{*}-algebra such that $L M(B)=M(B)$ and c_{0} be the C^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_{0} \otimes B$ satisfies the conditions (I)-(4).
(d) Let B be a unital C^{*}-algebra and X a locally compact Hausdorff space. Then $C_{0}(X) \otimes B$ satisfies the conditions (1)-(4).
(e) We will see that if $L M(B)=M(B)$, then $A=M_{n}(B)$, the C^{*}-algebra of $n \times n$ matrices over B, satisfies the conditions (1)-(4).
(f) The only stable C^{*}-algebra satisfying the conditions (I)-(4) are those dual C*-algebras.
(g) The only σ-unital simple C*-algebra satisfying the conditions (I)-(4) are those elementary ones (and unital ones).

Theorem 2.11 Let H be a countably generated Hilbert A-module.

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently,

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question.

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules.

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$.

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{Q T}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{Q T}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.
We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{Q T}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.
We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.
Define, for each $\delta>0$,

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{Q T}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.
We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.
Define, for each $\delta>0$, a function $f_{\delta} \in C([0, \infty))$ by $0 \leq f_{\delta}(t) \leq 1$,

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{Q T}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.
We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.
Define, for each $\delta>0$, a function $f_{\delta} \in C([0, \infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t)=0$ if $t \in[0, \delta / 2]$

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{Q T}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.
We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.
Define, for each $\delta>0$, a function $f_{\delta} \in C([0, \infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t)=0$ if $t \in[0, \delta / 2] \quad$ and $f_{\delta}(t)=1$ if $t \in[\delta, \infty)$

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{Q T}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.
We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.
Define, for each $\delta>0$, a function $f_{\delta} \in C([0, \infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t)=0$ if $t \in[0, \delta / 2]$ and $f_{\delta}(t)=1$ if $t \in[\delta, \infty)$ and $f_{\delta}(t)$ is linear in $(\delta / 2, \delta)$.

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{Q T}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.
We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.
Define, for each $\delta>0$, a function $f_{\delta} \in C([0, \infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t)=0$ if $t \in[0, \delta / 2]$ and $f_{\delta}(t)=1$ if $t \in[\delta, \infty)$ and $f_{\delta}(t)$ is linear in $(\delta / 2, \delta)$. Note that, for any $a \in(A \otimes \mathcal{K})_{+}, f_{\delta}(a) \in \operatorname{Ped}(A \otimes \mathcal{K})$.

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{Q T}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.
We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.
Define, for each $\delta>0$, a function $f_{\delta} \in C([0, \infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t)=0$ if $t \in[0, \delta / 2]$ and $f_{\delta}(t)=1$ if $t \in[\delta, \infty)$ and $f_{\delta}(t)$ is linear in $(\delta / 2, \delta)$. Note that, for any $a \in(A \otimes \mathcal{K})_{+}, f_{\delta}(a) \in \operatorname{Ped}(A \otimes \mathcal{K})$.
For $a \in(A \otimes \mathcal{K})_{+}$,

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently, H is injective in the category C_{1}, then $L(H)=B(H)$.

Let us consider the following question. Suppose that $H_{0} \subset H$ are Hilbert A-modules. How large could the orthogonal complement of H_{0} (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{Q T}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.
We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.
Define, for each $\delta>0$, a function $f_{\delta} \in C([0, \infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t)=0$ if $t \in[0, \delta / 2]$ and $f_{\delta}(t)=1$ if $t \in[\delta, \infty)$ and $f_{\delta}(t)$ is linear in $(\delta / 2, \delta)$. Note that, for any $a \in(A \otimes \mathcal{K})_{+}, f_{\delta}(a) \in \operatorname{Ped}(A \otimes \mathcal{K})$.
For $a \in(A \otimes \mathcal{K})_{+}$, define

$$
\begin{equation*}
d_{\tau}(a)=\lim \tau\left(f_{\delta}(a)\right) \text { for all } \tau \in \widetilde{Q T}(A) \text {. } \tag{e0.1}
\end{equation*}
$$

We say A has strict comparison,

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$,

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a)<d_{\tau}(b)$ for all $\tau \in \widetilde{Q T}(A)$

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a)<d_{\tau}(b)$ for all $\tau \in \widetilde{Q T}(A)$ implies that $a \lesssim b$

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a)<d_{\tau}(b)$ for all $\tau \in \widetilde{Q T}(A)$ implies that $a \lesssim b$ (in the sense of Cuntz, i.e., there exists a sequence $\left\{x_{n}\right\} \subset A \otimes \mathcal{K}$ such that $\lim _{n \rightarrow \infty}\left\|a-x_{n}^{*} b x_{n}\right\|=0$.

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a)<d_{\tau}(b)$ for all $\tau \in \widetilde{Q T}(A)$ implies that $a \lesssim b$ (in the sense of Cuntz, i.e., there exists a sequence $\left\{x_{n}\right\} \subset A \otimes \mathcal{K}$ such that $\lim _{n \rightarrow \infty}\left\|a-x_{n}^{*} b x_{n}\right\|=0$.
Let A be a σ-unital simple C^{*}-algebra.

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a)<d_{\tau}(b)$ for all $\tau \in \widetilde{Q T}(A)$ implies that $a \lesssim b$ (in the sense of Cuntz, i.e., there exists a sequence $\left\{x_{n}\right\} \subset A \otimes \mathcal{K}$ such that $\lim _{n \rightarrow \infty}\left\|a-x_{n}^{*} b x_{n}\right\|=0$.
Let A be a σ-unital simple C^{*}-algebra. If $e \in \operatorname{Ped}(A \otimes \mathcal{K})_{+}$.

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a)<d_{\tau}(b)$ for all $\tau \in \widetilde{Q T}(A)$ implies that $a \lesssim b$ (in the sense of Cuntz, i.e., there exists a sequence $\left\{x_{n}\right\} \subset A \otimes \mathcal{K}$ such that $\lim _{n \rightarrow \infty}\left\|a-x_{n}^{*} b x_{n}\right\|=0$.
Let A be a σ-unital simple C^{*}-algebra. If $e \in \operatorname{Ped}(A \otimes \mathcal{K})_{+}$. Then $B=\overline{a(A \otimes \mathcal{K}) a}$ is algebraically simple and $\operatorname{Ped}(B)=B$.

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a)<d_{\tau}(b)$ for all $\tau \in \widetilde{Q T}(A)$ implies that $a \lesssim b$ (in the sense of Cuntz, i.e., there exists a sequence $\left\{x_{n}\right\} \subset A \otimes \mathcal{K}$ such that $\lim _{n \rightarrow \infty}\left\|a-x_{n}^{*} b x_{n}\right\|=0$.
Let A be a σ-unital simple C^{*}-algebra. If $e \in \operatorname{Ped}(A \otimes \mathcal{K})_{+}$. Then $B=\overline{a(A \otimes \mathcal{K}) a}$ is algebraically simple and $\operatorname{Ped}(B)=B$. Moreover $B \otimes \mathcal{K} \cong A \otimes \mathcal{K}$.

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$.

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}^{w}$.

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}$. Define, for any $a \in(A \otimes \mathcal{K})_{+}$with $0 \leq a \leq 1$,

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}$. Define, for any $a \in(A \otimes \mathcal{K})_{+}$with $0 \leq a \leq 1$,

$$
\omega(a)=\lim _{n \rightarrow \infty} \sup \left\{d_{\tau}(a)-\tau\left(f_{1 / n}(a)\right): \tau \in \overline{Q T(A)}^{w}\right\} .
$$

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}$. Define, for any $a \in(A \otimes \mathcal{K})_{+}$with $0 \leq a \leq 1$,

$$
\omega(a)=\lim _{n \rightarrow \infty} \sup \left\{d_{\tau}(a)-\tau\left(f_{1 / n}(a)\right): \tau \in \overline{Q T(A)}^{w}\right\} .
$$

The function $d_{\tau}(a)\left(\tau \in \overline{Q T(A)}^{w}\right)$ is continuous if and only if $\omega(a)=0$.

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}$. Define, for any $a \in(A \otimes \mathcal{K})_{+}$with $0 \leq a \leq 1$,

$$
\omega(a)=\lim _{n \rightarrow \infty} \sup \left\{d_{\tau}(a)-\tau\left(f_{1 / n}(a)\right): \tau \in \overline{Q T(A)}^{w}\right\}
$$

The function $d_{\tau}(a)\left(\tau \in \overline{Q T(A)}^{w}\right)$ is continuous if and only if $\omega(a)=0$. Let H be a countably generated Hilbert A-module.

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}$. Define, for any $a \in(A \otimes \mathcal{K})_{+}$with $0 \leq a \leq 1$,

$$
\omega(a)=\lim _{n \rightarrow \infty} \sup \left\{d_{\tau}(a)-\tau\left(f_{1 / n}(a)\right): \tau \in \overline{Q T(A)}^{w}\right\} .
$$

The function $d_{\tau}(a)\left(\tau \in \overline{Q T(A)}^{w}\right)$ is continuous if and only if $\omega(a)=0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_{A}.

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}{ }^{w}$. Define, for any $a \in(A \otimes \mathcal{K})_{+}$with $0 \leq a \leq 1$,

$$
\omega(a)=\lim _{n \rightarrow \infty} \sup \left\{d_{\tau}(a)-\tau\left(f_{1 / n}(a)\right): \tau \in \overline{Q T(A)}^{w}\right\} .
$$

The function $d_{\tau}(a)\left(\tau \in \overline{Q T(A)}^{w}\right)$ is continuous if and only if $\omega(a)=0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_{A}. Note $K\left(H_{A}\right) \cong A \otimes \mathcal{K}$.

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}{ }^{w}$. Define, for any $a \in(A \otimes \mathcal{K})_{+}$with $0 \leq a \leq 1$,

$$
\omega(a)=\lim _{n \rightarrow \infty} \sup \left\{d_{\tau}(a)-\tau\left(f_{1 / n}(a)\right): \tau \in \overline{Q T(A)}^{w}\right\} .
$$

The function $d_{\tau}(a)\left(\tau \in \overline{Q T(A)}^{w}\right)$ is continuous if and only if $\omega(a)=0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_{A}. Note $K\left(H_{A}\right) \cong A \otimes \mathcal{K}$. So $K(H)$ is viewed as a hereditary C^{*}-subalgebra of $A \otimes \mathcal{K}$.

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}{ }^{w}$. Define, for any $a \in(A \otimes \mathcal{K})_{+}$with $0 \leq a \leq 1$,

$$
\omega(a)=\lim _{n \rightarrow \infty} \sup \left\{d_{\tau}(a)-\tau\left(f_{1 / n}(a)\right): \tau \in \overline{Q T(A)}^{w}\right\} .
$$

The function $d_{\tau}(a)\left(\tau \in \overline{Q T(A)}^{w}\right)$ is continuous if and only if $\omega(a)=0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_{A}. Note $K\left(H_{A}\right) \cong A \otimes \mathcal{K}$. So $K(H)$ is viewed as a hereditary C^{*}-subalgebra of $A \otimes \mathcal{K}$. Let $a \in K(H)$ be a strictly positive element.

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}{ }^{w}$. Define, for any $a \in(A \otimes \mathcal{K})_{+}$with $0 \leq a \leq 1$,

$$
\omega(a)=\lim _{n \rightarrow \infty} \sup \left\{d_{\tau}(a)-\tau\left(f_{1 / n}(a)\right): \tau \in \overline{Q T(A)}^{w}\right\} .
$$

The function $d_{\tau}(a)\left(\tau \in \overline{Q T(A)}^{w}\right)$ is continuous if and only if $\omega(a)=0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_{A}. Note $K\left(H_{A}\right) \cong A \otimes \mathcal{K}$. So $K(H)$ is viewed as a hereditary C^{*}-subalgebra of $A \otimes \mathcal{K}$. Let $a \in K(H)$ be a strictly positive element. Define $d_{\tau}(H)=d_{\tau}(a)$ for $\tau \in \overline{Q T(A)}^{w}$.

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}{ }^{w}$. Define, for any $a \in(A \otimes \mathcal{K})_{+}$with $0 \leq a \leq 1$,

$$
\omega(a)=\lim _{n \rightarrow \infty} \sup \left\{d_{\tau}(a)-\tau\left(f_{1 / n}(a)\right): \tau \in \overline{Q T(A)}^{w}\right\} .
$$

The function $d_{\tau}(a)\left(\tau \in \overline{Q T(A)}^{w}\right)$ is continuous if and only if $\omega(a)=0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_{A}. Note $K\left(H_{A}\right) \cong A \otimes \mathcal{K}$. So $K(H)$ is viewed as a hereditary C^{*}-subalgebra of $A \otimes \mathcal{K}$. Let $a \in K(H)$ be a strictly positive element. Define $d_{\tau}(H)=d_{\tau}(a)$ for $\tau \in \overline{Q T(A)}^{w}$. It is well defined.

If A is a σ-unital algebraically simple C^{*}-algebra, denote by $Q T(A)$ the set of all 2-quasitraces τ on A with $\|\tau\|=1$. Then $0 \notin \overline{Q T(A)}{ }^{w}$. Define, for any $a \in(A \otimes \mathcal{K})_{+}$with $0 \leq a \leq 1$,

$$
\omega(a)=\lim _{n \rightarrow \infty} \sup \left\{d_{\tau}(a)-\tau\left(f_{1 / n}(a)\right): \tau \in \overline{Q T(A)}^{w}\right\} .
$$

The function $d_{\tau}(a)\left(\tau \in \overline{Q T(A)}^{w}\right)$ is continuous if and only if $\omega(a)=0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_{A}. Note $K\left(H_{A}\right) \cong A \otimes \mathcal{K}$. So $K(H)$ is viewed as a hereditary C^{*}-subalgebra of $A \otimes \mathcal{K}$. Let $a \in K(H)$ be a strictly positive element. Define $d_{\tau}(H)=d_{\tau}(a)$ for $\tau \in \overline{Q T(A)}^{w}$. It is well defined. Then define $\omega(H)=\omega(a)$.

Theorem 2.12 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison.

Theorem 2.12 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison. Suppose that $H_{0} \subset H$ are countably generated Hilbert A-modules.

Theorem 2.12 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison. Suppose that $H_{0} \subset H$ are countably generated Hilbert A-modules. Then there is a Hilbert A-module $H_{00} \subset H_{0}$ such that

$$
\begin{equation*}
d_{\tau}\left(H_{00} \oplus H_{00}^{\perp}\right)>d_{\tau}(H)-\omega\left(H_{0}\right)-\epsilon \text { and } \tag{e0.2}
\end{equation*}
$$

Theorem 2.12 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison. Suppose that $H_{0} \subset H$ are countably generated Hilbert A-modules. Then there is a Hilbert A-module $H_{00} \subset H_{0}$ such that

$$
\begin{align*}
& d_{\tau}\left(H_{00} \oplus H_{00}^{\perp}\right)>d_{\tau}(H)-\omega\left(H_{0}\right)-\epsilon \text { and } \tag{e0.2}\\
& d_{\tau}\left(H_{00}\right)>d_{\tau}\left(H_{0}\right)-\omega\left(H_{0}\right)-\epsilon
\end{align*}
$$

Theorem 2.12 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison. Suppose that $H_{0} \subset H$ are countably generated Hilbert A-modules. Then there is a Hilbert A-module $H_{00} \subset H_{0}$ such that

$$
\begin{align*}
& d_{\tau}\left(H_{00} \oplus H_{00}^{\perp}\right)>d_{\tau}(H)-\omega\left(H_{0}\right)-\epsilon \text { and } \\
& d_{\tau}\left(H_{00}\right)>d_{\tau}\left(H_{0}\right)-\omega\left(H_{0}\right)-\epsilon .
\end{align*}
$$

for all $\tau \in \overline{Q T(A)}^{w}$,

Theorem 2.12 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison. Suppose that $H_{0} \subset H$ are countably generated Hilbert A-modules. Then there is a Hilbert A-module $H_{00} \subset H_{0}$ such that

$$
\begin{align*}
& d_{\tau}\left(H_{00} \oplus H_{00}^{\perp}\right)>d_{\tau}(H)-\omega\left(H_{0}\right)-\epsilon \text { and } \\
& d_{\tau}\left(H_{00}\right)>d_{\tau}\left(H_{0}\right)-\omega\left(H_{0}\right)-\epsilon .
\end{align*}
$$

for all $\tau \in \overline{Q T(A)}^{w}$, where $H_{00}^{\perp}=\left\{x \in H:\langle x, h\rangle=0\right.$ for all $\left.h \in H_{00}\right\}$.

Corollary 2.13 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison.

Corollary 2.13 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison. Suppose that $H_{0} \subset H$ are countably generated Hilbert A-modules.

Corollary 2.13 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison. Suppose that $H_{0} \subset H$ are countably generated Hilbert A-modules. Suppose that $\omega\left(H_{0}\right)=0$.

Corollary 2.13 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison. Suppose that $H_{0} \subset H$ are countably generated Hilbert A-modules. Suppose that $\omega\left(H_{0}\right)=0$. Then there is a Hilbert A-module $H_{00} \subset H_{0}$ such that

Corollary 2.13 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison. Suppose that $H_{0} \subset H$ are countably generated Hilbert A-modules. Suppose that $\omega\left(H_{0}\right)=0$. Then there is a Hilbert A-module $H_{00} \subset H_{0}$ such that

$$
\begin{equation*}
d_{\tau}\left(H_{00} \oplus H_{00}^{\perp}\right)>d_{\tau}(H)-\epsilon \text { and } \tag{e0.4}
\end{equation*}
$$

Corollary 2.13 Let A be a σ-unital algebraically simple C^{*}-algebra with strict comparison. Suppose that $H_{0} \subset H$ are countably generated Hilbert A-modules. Suppose that $\omega\left(H_{0}\right)=0$. Then there is a Hilbert A-module $H_{00} \subset H_{0}$ such that

$$
\begin{align*}
& d_{\tau}\left(H_{00} \oplus H_{00}^{\perp}\right)>d_{\tau}(H)-\epsilon \text { and } \tag{e0.4}\\
& d_{\tau}\left(H_{00}\right)>d_{\tau}\left(H_{0}\right)-\epsilon \tag{e0.5}
\end{align*}
$$

for all $\tau \in \overline{Q T(A)}^{w}$.

