Introduction to Hilbert C^* -modules, II

Huaxin Lin Department of Mathematics East China Normal University University of Oregon

過 ト イヨ ト イヨト

Definition

Let *H* be a Hilbert module over a C^* -algebra *A*.

- 4 目 ト - 4 日 ト - 4 日 ト

Definition

Let *H* be a Hilbert module over a *C*^{*}-algebra *A*. The algebraic tensor product $H \otimes A^{**}$ becomes a right A^{**} -module if we set $(h \otimes a) \cdot a_1 = h \otimes aa_1$ for all $h \in H$ and $a, a_1 \in A^{**}$.

Definition

Let *H* be a Hilbert module over a *C*^{*}-algebra *A*. The algebraic tensor product $H \otimes A^{**}$ becomes a right A^{**} -module if we set $(h \otimes a) \cdot a_1 = h \otimes aa_1$ for all $h \in H$ and $a, a_1 \in A^{**}$. Define $\langle -, - \rangle : H \otimes A^{**} \times H \otimes A^{**} \to A^{**}$

Definition

Let *H* be a Hilbert module over a *C*^{*}-algebra *A*. The algebraic tensor product $H \otimes A^{**}$ becomes a right A^{**} -module if we set $(h \otimes a) \cdot a_1 = h \otimes aa_1$ for all $h \in H$ and $a, a_1 \in A^{**}$. Define $\langle -, - \rangle : H \otimes A^{**} \times H \otimes A^{**} \to A^{**}$ by

$$\langle \sum_{i} h_i \otimes a_i, \sum_{j} x_j \otimes b_j \rangle = \sum_{i,j} a_i^* \langle h_i, x_j \rangle b_j.$$

Definition

Let *H* be a Hilbert module over a *C**-algebra *A*. The algebraic tensor product $H \otimes A^{**}$ becomes a right A^{**} -module if we set $(h \otimes a) \cdot a_1 = h \otimes aa_1$ for all $h \in H$ and $a, a_1 \in A^{**}$. Define $\langle -, - \rangle : H \otimes A^{**} \times H \otimes A^{**} \to A^{**}$ by

$$\langle \sum_{i} h_i \otimes a_i, \sum_{j} x_j \otimes b_j \rangle = \sum_{i,j} a_i^* \langle h_i, x_j \rangle b_j.$$

Set $N = \{z \in H \otimes A^{**} : \langle z, z \rangle = 0\}.$

Definition

Let *H* be a Hilbert module over a *C**-algebra *A*. The algebraic tensor product $H \otimes A^{**}$ becomes a right A^{**} -module if we set $(h \otimes a) \cdot a_1 = h \otimes aa_1$ for all $h \in H$ and $a, a_1 \in A^{**}$. Define $\langle -, - \rangle : H \otimes A^{**} \times H \otimes A^{**} \to A^{**}$ by

$$\langle \sum_{i} h_i \otimes a_i, \sum_{j} x_j \otimes b_j \rangle = \sum_{i,j} a_i^* \langle h_i, x_j \rangle b_j.$$

Set $N = \{z \in H \otimes A^{**} : \langle z, z \rangle = 0\}$. Then $(H \otimes A^{**})/N$ becomes a pre-Hilbert A^{**} -module containing H as an A-submodule.

Definition

Let *H* be a Hilbert module over a *C*^{*}-algebra *A*. The algebraic tensor product $H \otimes A^{**}$ becomes a right A^{**} -module if we set $(h \otimes a) \cdot a_1 = h \otimes aa_1$ for all $h \in H$ and $a, a_1 \in A^{**}$. Define $\langle -, - \rangle : H \otimes A^{**} \times H \otimes A^{**} \to A^{**}$ by

$$\langle \sum_{i} h_i \otimes a_i, \sum_{j} x_j \otimes b_j \rangle = \sum_{i,j} a_i^* \langle h_i, x_j \rangle b_j.$$

Set $N = \{z \in H \otimes A^{**} : \langle z, z \rangle = 0\}$. Then $(H \otimes A^{**})/N$ becomes a pre-Hilbert A^{**} -module containing H as an A-submodule. Denote by H^{\sim} the Hilbert A^{**} -module $((H \otimes A^{**})/N)^{-})^{\sharp}$. It is self-dual, i.e., $(H^{\sim})^{\sharp} = H^{\sim}$. Moreover, $B(H^{\sim}) = L(H^{\sim})$ is an W^{*} -algebra.

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T}

3

イロト 不得 トイヨト イヨト

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $(H \otimes A^{**})/N$ (with $\|\tilde{T}\| = \|T\|$).

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $(H \otimes A^{**})/N$ (with $\|\tilde{T}\| = \|T\|$). Therefore, \tilde{T} extends uniquely to a module map in $B(H^{\sim})$.

If $T \in B(H)$, then T extends uniquely to a module map \tilde{T} on $(H \otimes A^{**})/N$ (with $\|\tilde{T}\| = \|T\|$). Therefore, \tilde{T} extends uniquely to a module map in $B(H^{\sim})$. If $T \in B(H, H^{\sharp})$, for any $h \in H$,

$$\langle T(\sum_{i} h_i \otimes a_i), \sum_{j} x_j \otimes b_j \rangle = \sum_{i,j} a_i^* [T(h_i)(x_j)] b_j.$$

$$\langle T(\sum_i h_i \otimes a_i), \sum_j x_j \otimes b_j \rangle = \sum_{i,j} a_i^* [T(h_i)(x_j)] b_j.$$

Then T becomes an element in $B(((H \otimes A^{**})/N)^-, H^{\sim})$.

$$\langle T(\sum_i h_i \otimes a_i), \sum_j x_j \otimes b_j \rangle = \sum_{i,j} a_i^* [T(h_i)(x_j)] b_j.$$

Then T becomes an element in $B(((H \otimes A^{**})/N)^-, H^{\sim})$. So T then extends to a map in $B(H^{\sim})$ with $\|\tilde{T}\| = \|T\|$.

$$\langle T(\sum_i h_i \otimes a_i), \sum_j x_j \otimes b_j \rangle = \sum_{i,j} a_i^* [T(h_i)(x_j)] b_j.$$

Then T becomes an element in $B(((H \otimes A^{**})/N)^-, H^-)$. So T then extends to a map in $B(H^-)$ with $\|\tilde{T}\| = \|T\|$. Moreover such extension is unique.

Theorem 2.2 Let A be a C*-algebra, H be a Hilbert A-module and $T \in L(H)$.

一日、

 $H = \ker T \oplus |T|(H).$

· · · · · · · · ·

 $H = \ker T \oplus |T|(H).$

In particular, T has a polar decomposition T = V|T| in L(H).

 $H = \ker T \oplus |T|(H).$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$.

 $H = \ker T \oplus |T|(H).$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed.

 $H = \ker T \oplus |T|(H).$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$.

 $H = \ker T \oplus |T|(H).$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$. Since |T|(H) is closed,

 $H = \ker T \oplus |T|(H).$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$. Since |T|(H) is closed,

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

$$H = \ker T \oplus |T|(H).$$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$. Since |T|(H) is closed,

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$.

$$H = \ker T \oplus |T|(H).$$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$. Since |T|(H) is closed,

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$.

・何ト ・ヨト ・ヨト

$$H = \ker T \oplus |T|(H).$$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$. Since |T|(H) is closed,

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$. So $|T|^{1/2} \in B$. It is obvious that $|T|^{1/2}$ is also one-to-one on |T|(H).

・ 伺 ト ・ ヨ ト ・ ヨ ト …

$$H = \ker T \oplus |T|(H).$$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$. Since |T|(H) is closed,

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$. So $|T|^{1/2} \in B$. It is obvious that $|T|^{1/2}$ is also one-to-one on |T|(H). Therefore $|T|^{1/2}$ is invertible in B.

- 本間 と えき と えき とうき

$$H = \ker T \oplus |T|(H).$$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$. Since |T|(H) is closed,

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$. So $|T|^{1/2} \in B$. It is obvious that $|T|^{1/2}$ is also one-to-one on |T|(H). Therefore $|T|^{1/2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}(|T|^{1/2})$

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

$$H = \ker T \oplus |T|(H).$$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$. Since |T|(H) is closed,

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$. So $|T|^{1/2} \in B$. It is obvious that $|T|^{1/2}$ is also one-to-one on |T|(H). Therefore $|T|^{1/2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}(|T|^{1/2})$ or 0 is an isolated point in $\operatorname{sp}(|T|^{1/2})$.

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

$$H = \ker T \oplus |T|(H).$$

In particular, T has a polar decomposition T = V|T| in L(H).

Proof:

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$. Since |T|(H) is closed,

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$. So $|T|^{1/2} \in B$. It is obvious that $|T|^{1/2}$ is also one-to-one on |T|(H). Therefore $|T|^{1/2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}(|T|^{1/2})$ or 0 is an isolated point in $\operatorname{sp}(|T|^{1/2})$.

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$. Since |T|(H) is closed,

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$. So $|T|^{1/2} \in B$. It is obvious that $|T|^{1/2}$ is also one-to-one on |T|(H). Therefore $|T|^{1/2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}(|T|^{1/2})$ or 0 is an isolated point in $\operatorname{sp}(|T|^{1/2})$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let T = V|T| be the polar decomposition in $B(H^{\sim})$. Since T(H) is closed and V is a partial isometry, |T|(H) is closed. Notice that $|T| \in L(H)$. Since |T|(H) is closed,

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$. So $|T|^{1/2} \in B$. It is obvious that $|T|^{1/2}$ is also one-to-one on |T|(H). Therefore $|T|^{1/2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}(|T|^{1/2})$ or 0 is an isolated point in $\operatorname{sp}(|T|^{1/2})$. Let p be the range projection of |T| in $(L(H)^{**}$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ
$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$. So $|T|^{1/2} \in B$. It is obvious that $|T|^{1/2}$ is also one-to-one on |T|(H). Therefore $|T|^{1/2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}(|T|^{1/2})$ or 0 is an isolated point in $\operatorname{sp}(|T|^{1/2})$. Let p be the range projection of |T| in $(L(H)^{**}$. Then $|T|^{1/n} \to p$ in norm.

▲ ■ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ■

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$. So $|T|^{1/2} \in B$. It is obvious that $|T|^{1/2}$ is also one-to-one on |T|(H). Therefore $|T|^{1/2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}(|T|^{1/2})$ or 0 is an isolated point in $\operatorname{sp}(|T|^{1/2})$. Let p be the range projection of |T| in $(L(H)^{**}$. Then $|T|^{1/n} \to p$ in norm. It follows that $p \in L(H)$.

くぼう くほう くほう しほ

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$. So $|T|^{1/2} \in B$. It is obvious that $|T|^{1/2}$ is also one-to-one on |T|(H). Therefore $|T|^{1/2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}(|T|^{1/2})$ or 0 is an isolated point in $\operatorname{sp}(|T|^{1/2})$. Let p be the range projection of |T| in $(L(H)^{**}$. Then $|T|^{1/n} \to p$ in norm. It follows that $p \in L(H)$. Clearly, p(H) = |T|(H) and $(1-p)(H) = \ker T$,

▲ ■ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ■

$$|T|(H) = |T|^{1/2}(|T|^{1/2}(H)) \subset |T|^{1/2}(H).$$

So $|T|^{1/2}(H) = |T|(H)$. Set $B = \{S \in L(H) : S|T|(H) \subset |T|(H)\}$. So $|T|^{1/2} \in B$. It is obvious that $|T|^{1/2}$ is also one-to-one on |T|(H). Therefore $|T|^{1/2}$ is invertible in B. Hence either $0 \notin \operatorname{sp}(|T|^{1/2})$ or 0 is an isolated point in $\operatorname{sp}(|T|^{1/2})$. Let p be the range projection of |T| in $(L(H)^{**}$. Then $|T|^{1/n} \to p$ in norm. It follows that $p \in L(H)$. Clearly, p(H) = |T|(H) and $(1-p)(H) = \ker T$, whence $V \in L(H)$.

▲ ■ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ■

Corollary 2.3 Let H_1 and H_2 be Hilbert A-modules.

э

(日) (周) (三) (三)

・ 何 ト ・ ヨ ト ・ ヨ ト

Corollary 2.4 Let H_1 and H_2 be Hilbert A-modules such that $L(H_1) = B(H_1)$.

- 4 個 ト - 4 三 ト - 4 三 ト

Corollary 2.4 Let H_1 and H_2 be Hilbert A-modules such that $L(H_1) = B(H_1)$. If there exists an invertible map $T \in B(H_1, H_2)$, then $H_1 \cong H_2$.

- 4 同 6 4 日 6 4 日 6

Corollary 2.4 Let H_1 and H_2 be Hilbert A-modules such that $L(H_1) = B(H_1)$. If there exists an invertible map $T \in B(H_1, H_2)$, then $H_1 \cong H_2$.

Proof.

Note that $T^* \in B(H_2, H_1^{\sharp})$.

- 4 同 6 4 日 6 4 日 6

Corollary 2.4 Let H_1 and H_2 be Hilbert A-modules such that $L(H_1) = B(H_1)$. If there exists an invertible map $T \in B(H_1, H_2)$, then $H_1 \cong H_2$.

Proof.

Note that $T^* \in B(H_2, H_1^{\sharp})$. Therefore $T^*T \in B(H_1, H_1^{\sharp})$.

- 4 個 ト - 4 三 ト - 4 三 ト

Corollary 2.4 Let H_1 and H_2 be Hilbert A-modules such that $L(H_1) = B(H_1)$. If there exists an invertible map $T \in B(H_1, H_2)$, then $H_1 \cong H_2$.

Proof.

Note that $T^* \in B(H_2, H_1^{\sharp})$. Therefore $T^*T \in B(H_1, H_1^{\sharp})$. Since $L(H_1) = B(H_1), M(K(H_1)) = LM(K(H_1))$.

- 4 緑 ト - 4 戸 ト - 4 戸 ト

Corollary 2.4 Let H_1 and H_2 be Hilbert A-modules such that $L(H_1) = B(H_1)$. If there exists an invertible map $T \in B(H_1, H_2)$, then $H_1 \cong H_2$.

Proof.

Note that $T^* \in B(H_2, H_1^{\sharp})$. Therefore $T^*T \in B(H_1, H_1^{\sharp})$. Since $L(H_1) = B(H_1), M(K(H_1)) = LM(K(H_1))$. It follows a theorem of L. G. Brown that $QM(K(H_1)) = M(K(H_1))$.

- 4 同 6 4 日 6 4 日 6

Corollary 2.4 Let H_1 and H_2 be Hilbert A-modules such that $L(H_1) = B(H_1)$. If there exists an invertible map $T \in B(H_1, H_2)$, then $H_1 \cong H_2$.

Proof.

Note that $T^* \in B(H_2, H_1^{\sharp})$. Therefore $T^*T \in B(H_1, H_1^{\sharp})$. Since $L(H_1) = B(H_1), M(K(H_1)) = LM(K(H_1))$. It follows a theorem of L. G. Brown that $QM(K(H_1)) = M(K(H_1))$. Thus, by Theorem 1.14, $B(H_1, H_1^{\sharp}) = L(H_1)$.

Corollary 2.4 Let H_1 and H_2 be Hilbert A-modules such that $L(H_1) = B(H_1)$. If there exists an invertible map $T \in B(H_1, H_2)$, then $H_1 \cong H_2$.

Proof.

Note that $T^* \in B(H_2, H_1^{\sharp})$. Therefore $T^*T \in B(H_1, H_1^{\sharp})$. Since $L(H_1) = B(H_1), M(K(H_1)) = LM(K(H_1))$. It follows a theorem of L. G. Brown that $QM(K(H_1)) = M(K(H_1))$. Thus, by Theorem 1.14, $B(H_1, H_1^{\sharp}) = L(H_1)$. So $T^*T \in L(H_1)$.

Corollary 2.4 Let H_1 and H_2 be Hilbert A-modules such that $L(H_1) = B(H_1)$. If there exists an invertible map $T \in B(H_1, H_2)$, then $H_1 \cong H_2$.

Proof.

Note that $T^* \in B(H_2, H_1^{\sharp})$. Therefore $T^*T \in B(H_1, H_1^{\sharp})$. Since $L(H_1) = B(H_1), M(K(H_1)) = LM(K(H_1))$. It follows a theorem of L. G. Brown that $QM(K(H_1)) = M(K(H_1))$. Thus, by Theorem 1.14, $B(H_1, H_1^{\sharp}) = L(H_1)$. So $T^*T \in L(H_1)$. It follows that $|T| \in L(H_1)$ which is invertible.

Corollary 2.4 Let H_1 and H_2 be Hilbert A-modules such that $L(H_1) = B(H_1)$. If there exists an invertible map $T \in B(H_1, H_2)$, then $H_1 \cong H_2$.

Proof.

Note that $T^* \in B(H_2, H_1^{\sharp})$. Therefore $T^*T \in B(H_1, H_1^{\sharp})$. Since $L(H_1) = B(H_1), M(K(H_1)) = LM(K(H_1))$. It follows a theorem of L. G. Brown that $QM(K(H_1)) = M(K(H_1))$. Thus, by Theorem 1.14, $B(H_1, H_1^{\sharp}) = L(H_1)$. So $T^*T \in L(H_1)$. It follows that $|T| \in L(H_1)$ which is invertible. By apply ing Lemma 2.2, $U = T|T|^{-1}$ gives the desired unitary.

ヘロト 人間ト 人間ト 人間ト

Definition 2.4 Let H be a Hilbert module.

Huaxin Lin Department of Mathematics East Introduction to Hilbert C^* -modules, II

3

ヘロト 人間 ト 人 ヨト 人 ヨトー

Definition 2.4 Let H be a Hilbert module. We say H is orthogonally complementary

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition 2.4 Let H be a Hilbert module. We say H is orthogonally complementary if any Hilbert module H_1 containing H

 $H_1 = H \oplus H^{\perp}.$

$$H_1 = H \oplus H^{\perp}.$$

Clearly, not all Hilbert modules are orthogonally complementary.

$$H_1 = H \oplus H^{\perp}.$$

Clearly, not all Hilbert modules are orthogonally complementary. It is shown that if A is unital, then any orthogonal direct summand of A^n ,

$$H_1 = H \oplus H^{\perp}.$$

Clearly, not all Hilbert modules are orthogonally complementary. It is shown that if A is unital, then any orthogonal direct summand of A^n , the direct sum of *n* copies of *A*, is orthogonally complementary.

Theorem 2.5 Let E be a full Hilbert A-module such that L(E) = B(E).

Huaxin Lin Department of Mathematics East Introduction to Hilbert C*-modules, II

(日) (周) (三) (三)

Proof: Suppose that *H* is a Hilbert *A*-module and $E \subset H$.

Proof: Suppose that *H* is a Hilbert *A*-module and $E \subset H$. Let *P* be the bounded module map from *H* into E^{\sharp} defined by $Px(y) = \langle x, y \rangle$ for all $x \in H$ and $y \in E$.

Proof: Suppose that *H* is a Hilbert *A*-module and $E \subset H$. Let *P* be the bounded module map from *H* into E^{\sharp} defined by $Px(y) = \langle x, y \rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

 $T(z) = y(Px(z)) = y\langle x, z \rangle$ for all $z \in E$.

Proof: Suppose that *H* is a Hilbert *A*-module and $E \subset H$. Let *P* be the bounded module map from *H* into E^{\sharp} defined by $Px(y) = \langle x, y \rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$T(z) = y(Px(z)) = y\langle x, z \rangle$$
 for all $z \in E$.

Working in $B(E^{\sim})$,

Proof: Suppose that *H* is a Hilbert *A*-module and $E \subset H$. Let *P* be the bounded module map from *H* into E^{\sharp} defined by $Px(y) = \langle x, y \rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$T(z) = y(Px(z)) = y\langle x, z \rangle$$
 for all $z \in E$.

Working in $B(E^{\sim})$, if necessary, we see that

 $T^*(z) = Px\langle y, z \rangle$ for all $z \in E$.

Proof: Suppose that *H* is a Hilbert *A*-module and $E \subset H$. Let *P* be the bounded module map from *H* into E^{\sharp} defined by $Px(y) = \langle x, y \rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$T(z) = y(Px(z)) = y\langle x, z \rangle$$
 for all $z \in E$.

Working in $B(E^{\sim})$, if necessary, we see that

 $T^*(z) = Px\langle y, z \rangle$ for all $z \in E$.

Since $T \in B(E) = L(E)$, $T^* \in L(E)$.

Proof: Suppose that *H* is a Hilbert *A*-module and $E \subset H$. Let *P* be the bounded module map from *H* into E^{\sharp} defined by $Px(y) = \langle x, y \rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$T(z) = y(Px(z)) = y\langle x, z \rangle$$
 for all $z \in E$.

Working in $B(E^{\sim})$, if necessary, we see that

 $T^*(z) = Px\langle y, z \rangle$ for all $z \in E$.

Since $T \in B(E) = L(E)$, $T^* \in L(E)$. Therefore $Px(\sum_{i=1}^{m} \langle y_i, w_i \rangle) \in E$ for all $y_i, w_i \in E$, $1 \le i \le m$ (for any $m \in \mathbb{N}$).

Proof: Suppose that *H* is a Hilbert *A*-module and $E \subset H$. Let *P* be the bounded module map from *H* into E^{\sharp} defined by $Px(y) = \langle x, y \rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$T(z) = y(Px(z)) = y\langle x, z \rangle$$
 for all $z \in E$.

Working in $B(E^{\sim})$, if necessary, we see that

$$T^*(z) = Px\langle y, z \rangle$$
 for all $z \in E$.

Since $T \in B(E) = L(E)$, $T^* \in L(E)$. Therefore $Px(\sum_{i=1}^{m} \langle y_i, w_i \rangle) \in E$ for all $y_i, w_i \in E$, $1 \le i \le m$ (for any $m \in \mathbb{N}$). Let $x = u \langle x, x \rangle^{1/2}$ be the polar decomposition of x in H^{\sim} .

Proof: Suppose that *H* is a Hilbert *A*-module and $E \subset H$. Let *P* be the bounded module map from *H* into E^{\sharp} defined by $Px(y) = \langle x, y \rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$T(z) = y(Px(z)) = y\langle x, z \rangle$$
 for all $z \in E$.

Working in $B(E^{\sim})$, if necessary, we see that

 $T^*(z) = Px\langle y, z \rangle$ for all $z \in E$.

Since $T \in B(E) = L(E)$, $T^* \in L(E)$. Therefore $Px(\sum_{i=1}^{m} \langle y_i, w_i \rangle) \in E$ for all $y_i, w_i \in E$, $1 \le i \le m$ (for any $m \in \mathbb{N}$). Let $x = u \langle x, x \rangle^{1/2}$ be the polar decomposition of x in H^{\sim} . With $||z|| \le 1$, we have

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof: Suppose that *H* is a Hilbert *A*-module and $E \subset H$. Let *P* be the bounded module map from *H* into E^{\sharp} defined by $Px(y) = \langle x, y \rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$T(z) = y(Px(z)) = y\langle x, z \rangle$$
 for all $z \in E$.

Working in $B(E^{\sim})$, if necessary, we see that

$$T^*(z) = Px\langle y, z \rangle$$
 for all $z \in E$.

Since $T \in B(E) = L(E)$, $T^* \in L(E)$. Therefore $Px(\sum_{i=1}^{m} \langle y_i, w_i \rangle) \in E$ for all $y_i, w_i \in E$, $1 \le i \le m$ (for any $m \in \mathbb{N}$). Let $x = u \langle x, x \rangle^{1/2}$ be the polar decomposition of x in H^{\sim} . With $||z|| \le 1$, we have

$$\|\langle Px,z\rangle - \langle Px(\sum_{i=1}^m \langle y_i,w_i\rangle),z\rangle \leq \|(I-\sum_{i=1}^m \langle y_i,w_i\rangle)\langle x,x\rangle^{1/2}\|.$$

Proof:

Suppose that *H* is a Hilbert *A*-module and $E \subset H$. Let *P* be the bounded module map from *H* into E^{\sharp} defined by $Px(y) = \langle x, y \rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$T(z) = y(Px(z)) = y\langle x, z \rangle$$
 for all $z \in E$.

Working in $B(E^{\sim})$, if necessary, we see that

$$T^*(z) = Px\langle y, z \rangle$$
 for all $z \in E$.

Since $T \in B(E) = L(E)$, $T^* \in L(E)$. Therefore $Px(\sum_{i=1}^{m} \langle y_i, w_i \rangle) \in E$ for all $y_i, w_i \in E$, $1 \le i \le m$ (for any $m \in \mathbb{N}$). Let $x = u \langle x, x \rangle^{1/2}$ be the polar decomposition of x in H^{\sim} . With $||z|| \le 1$, we have

$$\|\langle Px,z\rangle - \langle Px(\sum_{i=1}^m \langle y_i,w_i\rangle),z\rangle \le \|(I-\sum_{i=1}^m \langle y_i,w_i\rangle)\langle x,x\rangle^{1/2}\|.$$
Suppose that *H* is a Hilbert *A*-module and $E \subset H$. Let *P* be the bounded module map from *H* into E^{\sharp} defined by $Px(y) = \langle x, y \rangle$ for all $x \in H$ and $y \in E$. Fix $x \in H$ and $y \in E$, define

$$T(z) = y(Px(z)) = y\langle x, z \rangle$$
 for all $z \in E$.

Working in $B(E^{\sim})$, if necessary, we see that

$$T^*(z) = Px\langle y, z \rangle$$
 for all $z \in E$.

Since $T \in B(E) = L(E)$, $T^* \in L(E)$. Therefore $Px(\sum_{i=1}^{m} \langle y_i, w_i \rangle) \in E$ for all $y_i, w_i \in E$, $1 \le i \le m$ (for any $m \in \mathbb{N}$). Let $x = u \langle x, x \rangle^{1/2}$ be the polar decomposition of x in H^{\sim} . With $||z|| \le 1$, we have

$$\|\langle Px,z\rangle - \langle Px(\sum_{i=1}^m \langle y_i,w_i\rangle),z\rangle \leq \|(I-\sum_{i=1}^m \langle y_i,w_i\rangle)\langle x,x\rangle^{1/2}\|.$$

Since *E* is full and $Px(\sum_{i=1}^{m} \langle y_i, w_i \rangle \in E$ for all $y_i, w_i \in E$, we conclude from the above inequalities that $Px \in E$ for all $x \in H$. Therefore $P \in B(H)$ and $H = (I - P)H \oplus E$. This completes the proof.

Corollary 2.6 Let A be a C^* -algebra such that LM(A) = M(A)

Huaxin Lin Department of Mathematics East Introduction to Hilbert C*-modules, II

Definition 2.7 Let H_1 and H_2 be Hilbert modules over a C^* -algebra A and $H_1 \subset H_2$.

Definition 2.7 Let H_1 and H_2 be Hilbert modules over a C^* -algebra A and $H_1 \subset H_2$. Let H be also a Hilbert A-module.

Definition 2.7 Let H_1 and H_2 be Hilbert modules over a C^* -algebra A and $H_1 \subset H_2$. Let H be also a Hilbert A-module. Suppose that there is a bounded module map $T : H_1 \to H$.

Definition 2.7 Let H_1 and H_2 be Hilbert modules over a C^* -algebra A and $H_1 \subset H_2$. Let H be also a Hilbert A-module. Suppose that there is a bounded module map $T : H_1 \to H$. Does there exists a module map $\tilde{T} : H_2 \to H$ such that $\tilde{T}|_{H_1} = T$ and $\|\tilde{T}\| = \|T\|$?.

In other words, we are search a map \tilde{T} with $\|\tilde{T}\| = \|T\|$ such that the following commutative diagram commutes:

Let C_1 be category whose objects are Hilbert *A*-modules and morphisms are contractive module maps with adjoints. We would like to identify those injective objects.

Lemma 2.8 Let H be a Hilbert module over a C*-algebra A

Huaxin Lin Department of Mathematics East Introduction to Hilbert C*-modules, II

(日) (周) (三) (三)

Lemma 2.8 Let H be a Hilbert module over a C^* -algebra A and H₀ a closed submodule of H.

Lemma 2.8 Let H be a Hilbert module over a C^{*}-algebra A and H₀ a closed submodule of H. Suppose that $T \in K(H_0)$,

Lemma 2.8 Let H be a Hilbert module over a C*-algebra A and H₀ a closed submodule of H. Suppose that $T \in K(H_0)$, then there is $\tilde{T} \in K(H)$ such that $\|\tilde{T}\| = \|T\|$ and $T|_{H_0} = T$.

Lemma 2.8 Let H be a Hilbert module over a C*-algebra A and H₀ a closed submodule of H. Suppose that $T \in K(H_0)$, then there is $\tilde{T} \in K(H)$ such that $\|\tilde{T}\| = \|T\|$ and $T|_{H_0} = T$. Consequently, $K(H_0)$ may be regarded as a hereditary C*-subalgebra of K(H).

Lemma 2.8 Let H be a Hilbert module over a C*-algebra A and H₀ a closed submodule of H. Suppose that $T \in K(H_0)$, then there is $\tilde{T} \in K(H)$ such that $\|\tilde{T}\| = \|T\|$ and $T|_{H_0} = T$. Consequently, $K(H_0)$ may be regarded as a hereditary C*-subalgebra of K(H).

Theorem 2.9 Let A be a C^* -algebra and H be a Hilbert A-module. Then H is injective in the category C_1 if and only if H is orthogonal complementary.

We first assume that H is orthogonally complementary.

э

We first assume that H is orthogonally complementary. Let H_0 be a closed submodule of a Hilbert A-module H_1 and T a bounded module map in $L(H_0, H)$.

くほと くほと くほと

We first assume that H is orthogonally complementary. Let H_0 be a closed submodule of a Hilbert A-module H_1 and T a bounded module map in $L(H_0, H)$. Set $H_2 = H_0 \oplus H$ and define $T_{\lambda}(h_0 \oplus h) = 0 \oplus T(h_0) + \lambda h$ for a;; $h_0 \in H_0$, $h \in H$, where $0 < \lambda < 1$.

We first assume that H is orthogonally complementary. Let H_0 be a closed submodule of a Hilbert A-module H_1 and T a bounded module map in $L(H_0, H)$. Set $H_2 = H_0 \oplus H$ and define $T_{\lambda}(h_0 \oplus h) = 0 \oplus T(h_0) + \lambda h$ for a;; $h_0 \in H_0$, $h \in H$, where $0 < \lambda < 1$. Clearly $T_{\lambda} \in L(H_2)$ and

We first assume that H is orthogonally complementary. Let H_0 be a closed submodule of a Hilbert A-module H_1 and T a bounded module map in $L(H_0, H)$. Set $H_2 = H_0 \oplus H$ and define $T_{\lambda}(h_0 \oplus h) = 0 \oplus T(h_0) + \lambda h$ for a;; $h_0 \in H_0$, $h \in H$, where $0 < \lambda < 1$. Clearly $T_{\lambda} \in L(H_2)$ and

 $||T_{\lambda}|| \leq (||T||^2 + \lambda^2)^{1/2}.$

We first assume that H is orthogonally complementary. Let H_0 be a closed submodule of a Hilbert A-module H_1 and T a bounded module map in $L(H_0, H)$. Set $H_2 = H_0 \oplus H$ and define $T_{\lambda}(h_0 \oplus h) = 0 \oplus T(h_0) + \lambda h$ for a;; $h_0 \in H_0$, $h \in H$, where $0 < \lambda < 1$. Clearly $T_{\lambda} \in L(H_2)$ and

$$||T_{\lambda}|| \leq (||T||^2 + \lambda^2)^{1/2}.$$

Moreover, T_{λ} is surjective.

We first assume that H is orthogonally complementary. Let H_0 be a closed submodule of a Hilbert A-module H_1 and T a bounded module map in $L(H_0, H)$. Set $H_2 = H_0 \oplus H$ and define $T_{\lambda}(h_0 \oplus h) = 0 \oplus T(h_0) + \lambda h$ for a;; $h_0 \in H_0$, $h \in H$, where $0 < \lambda < 1$. Clearly $T_{\lambda} \in L(H_2)$ and

$$||T_{\lambda}|| \leq (||T||^2 + \lambda^2)^{1/2}$$

Moreover, T_{λ} is surjective. It follows from Theorem 2.2 that

$$H_2 = \ker T \oplus |T_\lambda|(H_2).$$

Furthermore, T_{λ} is one-to-one on $|T_{\lambda}|(H_2)$ and maps $|T_{\lambda}|(H_2)$ onto $0 \oplus H$. By Cor. 2.3, $|T_{\lambda}|(H_2) \cong H$.

We first assume that H is orthogonally complementary. Let H_0 be a closed submodule of a Hilbert A-module H_1 and T a bounded module map in $L(H_0, H)$. Set $H_2 = H_0 \oplus H$ and define $T_{\lambda}(h_0 \oplus h) = 0 \oplus T(h_0) + \lambda h$ for a;; $h_0 \in H_0$, $h \in H$, where $0 < \lambda < 1$. Clearly $T_{\lambda} \in L(H_2)$ and

$$||T_{\lambda}|| \leq (||T||^2 + \lambda^2)^{1/2}$$

Moreover, T_{λ} is surjective. It follows from Theorem 2.2 that

$$H_2 = \ker T \oplus |T_\lambda|(H_2).$$

Furthermore, T_{λ} is one-to-one on $|T_{\lambda}|(H_2)$ and maps $|T_{\lambda}|(H_2)$ onto $0 \oplus H$. By Cor. 2.3, $|T_{\lambda}|(H_2) \cong H$. So $|T_{\lambda}(H_2)$ is orthogonally complementary.

We first assume that H is orthogonally complementary. Let H_0 be a closed submodule of a Hilbert A-module H_1 and T a bounded module map in $L(H_0, H)$. Set $H_2 = H_0 \oplus H$ and define $T_{\lambda}(h_0 \oplus h) = 0 \oplus T(h_0) + \lambda h$ for a;; $h_0 \in H_0$, $h \in H$, where $0 < \lambda < 1$. Clearly $T_{\lambda} \in L(H_2)$ and

$$||T_{\lambda}|| \leq (||T||^2 + \lambda^2)^{1/2}$$

Moreover, T_{λ} is surjective. It follows from Theorem 2.2 that

$$H_2 = \ker T \oplus |T_\lambda|(H_2).$$

Furthermore, T_{λ} is one-to-one on $|T_{\lambda}|(H_2)$ and maps $|T_{\lambda}|(H_2)$ onto $0 \oplus H$. By Cor. 2.3, $|T_{\lambda}|(H_2) \cong H$. So $|T_{\lambda}(H_2)$ is orthogonally complementary. Set $H_3 = H_1 \oplus H$

We first assume that H is orthogonally complementary. Let H_0 be a closed submodule of a Hilbert A-module H_1 and T a bounded module map in $L(H_0, H)$. Set $H_2 = H_0 \oplus H$ and define $T_{\lambda}(h_0 \oplus h) = 0 \oplus T(h_0) + \lambda h$ for a;; $h_0 \in H_0$, $h \in H$, where $0 < \lambda < 1$. Clearly $T_{\lambda} \in L(H_2)$ and

$$||T_{\lambda}|| \leq (||T||^2 + \lambda^2)^{1/2}$$

Moreover, T_{λ} is surjective. It follows from Theorem 2.2 that

$$H_2 = \ker T \oplus |T_\lambda|(H_2).$$

Furthermore, T_{λ} is one-to-one on $|T_{\lambda}|(H_2)$ and maps $|T_{\lambda}|(H_2)$ onto $0 \oplus H$. By Cor. 2.3, $|T_{\lambda}|(H_2) \cong H$. So $|T_{\lambda}(H_2)$ is orthogonally complementary. Set $H_3 = H_1 \oplus H$ then

$$H_3 \supset H_2 \supset |T_{\lambda}|(H_2).$$

 $H_3 = H_4 \oplus |T_\lambda|(H_2).$

3

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

$$H_3 = H_4 \oplus |T_\lambda|(H_2).$$

for some closed submodule H_4 .

э

(日) (周) (三) (三)

$$H_3 = H_4 \oplus |T_\lambda|(H_2).$$

for some closed submodule H_4 . We define \tilde{T}_{λ} in $L(H_3)$ by

 $\tilde{T}_{\lambda}(h_4 \oplus h) = T_{\lambda}(h)$ for all $h_4 \in H_4$ and $h \in |T_{\lambda}|(H_2)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$H_3 = H_4 \oplus |T_\lambda|(H_2).$$

for some closed submodule H_4 . We define \tilde{T}_{λ} in $L(H_3)$ by

 $\tilde{T}_{\lambda}(h_4 \oplus h) = T_{\lambda}(h)$ for all $h_4 \in H_4$ and $h \in |T_{\lambda}|(H_2)$. Clearly $\tilde{T}_{\lambda}|_H = T_{\lambda}$ and $\|\tilde{T}\| = \|T\|$.

$$H_3 = H_4 \oplus |T_\lambda|(H_2).$$

for some closed submodule H_4 . We define \tilde{T}_{λ} in $L(H_3)$ by

 $\widetilde{T}_{\lambda}(h_4 \oplus h) = T_{\lambda}(h)$ for all $h_4 \in H_4$ and $h \in |T_{\lambda}|(H_2)$.

Clearly $\tilde{T}_{\lambda}|_{H} = T_{\lambda}$ and $\|\tilde{T}\| = \|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in M(K(H_{3}))$.

$$H_3 = H_4 \oplus |T_\lambda|(H_2).$$

for some closed submodule H_4 . We define \tilde{T}_{λ} in $L(H_3)$ by

$$ilde{T}_{\lambda}(h_4\oplus h)=T_{\lambda}(h) \, ext{ for all } h_4\in H_4 \, ext{ and } \, h\in |T_{\lambda}|(H_2).$$

Clearly $\tilde{T}_{\lambda}|_{H} = T_{\lambda}$ and $\|\tilde{T}\| = \|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in \mathcal{M}(\mathcal{K}(H_{3}))$. It follows from 2.8 that $\mathcal{K}(H_{2})$ is a hereditary C*-subalgebra of $\mathcal{K}(H_{3})$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$H_3 = H_4 \oplus |T_\lambda|(H_2).$$

for some closed submodule H_4 . We define \tilde{T}_{λ} in $L(H_3)$ by

$$ilde{T}_{\lambda}(h_4\oplus h)=T_{\lambda}(h) \, ext{ for all } h_4\in H_4 \, ext{ and } \, h\in |T_{\lambda}|(H_2).$$

Clearly $\tilde{T}_{\lambda}|_{H} = T_{\lambda}$ and $\|\tilde{T}\| = \|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in \mathcal{M}(\mathcal{K}(H_{3}))$. It follows from 2.8 that $\mathcal{K}(H_{2})$ is a hereditary *C**-subalgebra of $\mathcal{K}(H_{3})$. Let *p* be the open projection in $\mathcal{K}(H_{3})^{**}$ corresponding to $\mathcal{K}(H_{2})$.

$$H_3 = H_4 \oplus |T_\lambda|(H_2).$$

for some closed submodule H_4 . We define \tilde{T}_{λ} in $L(H_3)$ by

$$ilde{T}_{\lambda}(h_4\oplus h)=T_{\lambda}(h) \, ext{ for all } h_4\in H_4 \, ext{ and } \, h\in |T_{\lambda}|(H_2).$$

Clearly $\tilde{T}_{\lambda}|_{H} = T_{\lambda}$ and $\|\tilde{T}\| = \|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in M(K(H_{3}))$. It follows from 2.8 that $K(H_{2})$ is a hereditary C*-subalgebra of $K(H_{3})$. Let p be the open projection in $K(H_{3})^{**}$ corresponding to $K(H_{2})$. If $h \in H_{2}^{\perp} = \{h \in H_{3} : \langle h, x \rangle = 0 \text{ for all } x \in H_{2}\}$, then $\tilde{T}_{\lambda}(h) = 0$.

$$H_3 = H_4 \oplus |T_\lambda|(H_2).$$

for some closed submodule H_4 . We define \tilde{T}_{λ} in $L(H_3)$ by

$$ilde{T}_{\lambda}(h_4\oplus h)=T_{\lambda}(h) \, ext{ for all } h_4\in H_4 \, ext{ and } \, h\in |T_{\lambda}|(H_2).$$

Clearly $\tilde{T}_{\lambda}|_{H} = T_{\lambda}$ and $\|\tilde{T}\| = \|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in M(K(H_{3}))$. It follows from 2.8 that $K(H_{2})$ is a hereditary C*-subalgebra of $K(H_{3})$. Let p be the open projection in $K(H_{3})^{**}$ corresponding to $K(H_{2})$. If $h \in H_{2}^{\perp} = \{h \in H_{3} : \langle h, x \rangle = 0 \text{ for all } x \in H_{2}\}$, then $\tilde{T}_{\lambda}(h) = 0$. Therefore $\tilde{T}_{\lambda}(1-\bar{p}) = 0$.

$$H_3 = H_4 \oplus |T_\lambda|(H_2).$$

for some closed submodule H_4 . We define \tilde{T}_{λ} in $L(H_3)$ by

$$ilde{T}_{\lambda}(h_4\oplus h)=T_{\lambda}(h) \, ext{ for all } h_4\in H_4 \, ext{ and } \, h\in |T_{\lambda}|(H_2).$$

Clearly $\tilde{T}_{\lambda}|_{H} = T_{\lambda}$ and $\|\tilde{T}\| = \|T\|$. By a Kasparov's Theorem, we have $T_{\lambda} \in \mathcal{M}(\mathcal{K}(H_{3}))$. It follows from 2.8 that $\mathcal{K}(H_{2})$ is a hereditary C*-subalgebra of $\mathcal{K}(H_{3})$. Let p be the open projection in $\mathcal{K}(H_{3})^{**}$ corresponding to $\mathcal{K}(H_{2})$. If $h \in H_{2}^{\perp} = \{h \in H_{3} : \langle h, x \rangle = 0 \text{ for all } x \in H_{2}\}, \text{ then } \tilde{T}_{\lambda}(h) = 0.$ Therefore $\tilde{T}_{\lambda}(1-\bar{p}) = 0$. For any $k \in \mathcal{K}(H_{3})$,

$$k\, ilde{T}_{\lambda}(1-ar{p})=0,$$

since $\tilde{T}_{\lambda} \in_{M} (K(H_{3}))$ and $k \tilde{T}_{\lambda} \in K(H_{3})$.

Let *p* be the open projection in $K(H_3)^{**}$ corresponding to $K(H_2)$. If $h \in H_2^{\perp} = \{h \in H_3 : \langle h, x \rangle = 0 \text{ for all } x \in H_2\}$, then $\tilde{T}_{\lambda}(h) = 0$. Therefore $\tilde{T}_{\lambda}(1 - \bar{p}) = 0$. Let p be the open projection in $K(H_3)^{**}$ corresponding to $K(H_2)$. If $h \in H_2^{\perp} = \{h \in H_3 : \langle h, x \rangle = 0 \text{ for all } x \in H_2\}$, then $\tilde{T}_{\lambda}(h) = 0$. Therefore $\tilde{T}_{\lambda}(1 - \bar{p}) = 0$. For any $k \in K(H_3)$,

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_{M} (K(H_{3}))$ and $k \tilde{T}_{\lambda} \in K(H_{3})$.
$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_{M} (K(H_{3}))$ and $k \tilde{T}_{\lambda} \in K(H_{3})$.

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{\mathcal{T}}_{\lambda} \in_{\mathcal{M}} (\mathcal{K}(\mathcal{H}_3))$ and $k \tilde{\mathcal{T}}_{\lambda} \in \mathcal{K}(\mathcal{H}_3)$. Put $q = (1 - \bar{p})$.

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_M (K(H_3))$ and $k\tilde{T}_{\lambda} \in K(H_3)$. Put $q = (1 - \bar{p})$. Note that q is an open projection.

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_M (K(H_3))$ and $k\tilde{T}_{\lambda} \in K(H_3)$. Put $q = (1 - \bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^* k^2 T_{\lambda}$.

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_{M} (K(H_{3}))$ and $k\tilde{T}_{\lambda} \in K(H_{3})$. Put $q = (1 - \bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*}k^{2}T_{\lambda}$. Then eq = 0.

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_{M} (K(H_{3}))$ and $k\tilde{T}_{\lambda} \in K(H_{3})$. Put $q = (1 - \bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*}k^{2}T_{\lambda}$. Then eq = 0. Since p is open, it follows follows that $e \leq 1 - \bar{q}$.

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_M (K(H_3))$ and $k\tilde{T}_{\lambda} \in K(H_3)$. Put $q = (1 - \bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^* k^2 T_{\lambda}$. Then eq = 0. Since p is open, it follows follows that $e \leq 1 - \bar{q}$. Hence $e \leq e - e\bar{q}e$,

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_M (K(H_3))$ and $k\tilde{T}_{\lambda} \in K(H_3)$. Put $q = (1 - \bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^* k^2 T_{\lambda}$. Then eq = 0. Since p is open, it follows follows that $e \leq 1 - \bar{q}$. Hence $e \leq e - e\bar{q}e$, or $e\bar{q}e = 0$.

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_{M} (K(H_{3}))$ and $k\tilde{T}_{\lambda} \in K(H_{3})$. Put $q = (1 - \bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*}k^{2}T_{\lambda}$. Then eq = 0. Since p is open, it follows follows that $e \leq 1 - \bar{q}$. Hence $e \leq e - e\bar{q}e$, or $e\bar{q}e = 0$. Hence $e\bar{q} = 0$.

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_M (K(H_3))$ and $k\tilde{T}_{\lambda} \in K(H_3)$. Put $q = (1 - \bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^* k^2 T_{\lambda}$. Then eq = 0. Since p is open, it follows follows that $e \leq 1 - \bar{q}$. Hence $e \leq e - e\bar{q}e$, or $e\bar{q}e = 0$. Hence $e\bar{q} = 0$. It follows that e(1 - p) = 0.

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_{M} (K(H_{3}))$ and $k\tilde{T}_{\lambda} \in K(H_{3})$. Put $q = (1 - \bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*}k^{2}T_{\lambda}$. Then eq = 0. Since p is open, it follows follows that $e \leq 1 - \bar{q}$. Hence $e \leq e - e\bar{q}e$, or $e\bar{q}e = 0$. Hence $e\bar{q} = 0$. It follows that e(1 - p) = 0. Thus $k\tilde{T}_{\lambda}(1 - p) = 0$ for all $k \in K(H_{2})$.

$$k\,\tilde{T}_{\lambda}(1-\bar{p})=0,$$

since $\tilde{T}_{\lambda} \in_{M} (K(H_{3}))$ and $k\tilde{T}_{\lambda} \in K(H_{3})$. Put $q = (1 - \bar{p})$. Note that q is an open projection. Let e be the range projection of $T_{\lambda}^{*}k^{2}T_{\lambda}$. Then eq = 0. Since p is open, it follows follows that $e \leq 1 - \bar{q}$. Hence $e \leq e - e\bar{q}e$, or $e\bar{q}e = 0$. Hence $e\bar{q} = 0$. It follows that e(1 - p) = 0. Thus $k\tilde{T}_{\lambda}(1 - p) = 0$ for all $k \in K(H_{2})$. It follows that $\tilde{T}_{\lambda}(1 - p) = 0$.

- 御下 - 西下 - 西下 - 西

For any $k_1 \in K(H_2)$, $h \in H_2$, $k_1(h) \in H_2$, and

$$\|(ilde{T}_\lambda - ilde{T}_{\lambda'})k_1(h)\| \leq |\lambda - \lambda'|\|k_1(h)\|.$$

э

イロト イ理ト イヨト イヨトー

Therefore

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'| \|k_1\|$$

for any $k_3 \in K(H_2)$.

3

▲圖▶ ▲ 圖▶ ▲ 圖▶

Therefore

$$\| ilde{T}_{\lambda} - ilde{T}_{\lambda'}\| \leq |\lambda - \lambda'| \|k_1\|$$

for any $k_3 \in K(H_2)$. Thus

$$\|(\tilde{T}_{\lambda} - \tilde{T}_{\lambda'})p\| < |\lambda - \lambda'|.$$

3

★週 ▶ ★ 国 ▶ ★ 国 ▶ …

Therefore

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'| \|k_1\|$$

for any $k_3 \in K(H_2)$. Thus

$$\|(\tilde{T}_{\lambda} - \tilde{T}_{\lambda'})p\| < |\lambda - \lambda'|.$$

Since $\tilde{T}_{\lambda}(1-p)=0$,

3

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

Therefore

$$\| ilde{T}_{\lambda} - ilde{T}_{\lambda'}\| \le |\lambda - \lambda'| \|k_1\|$$

for any $k_3 \in K(H_2)$. Thus

$$\|(\tilde{T}_{\lambda} - \tilde{T}_{\lambda'})p\| < |\lambda - \lambda'|.$$

Since $ilde{T}_{\lambda}(1-p)=0$, we obtain that

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'|.$$

メポト イヨト イヨト ニヨ

Therefore

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'| \|k_1\|$$

for any $k_3 \in K(H_2)$. Thus

$$\|(\tilde{T}_{\lambda} - \tilde{T}_{\lambda'})p\| < |\lambda - \lambda'|.$$

Since $ilde{T}_{\lambda}(1-p)=0$, we obtain that

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'|.$$

Set $\tilde{T} = \lim_{\lambda \to 0} \tilde{T}_{\lambda}$.

3

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ……

Therefore

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'| \|k_1\|$$

for any $k_3 \in K(H_2)$. Thus

$$\|(\tilde{T}_{\lambda} - \tilde{T}_{\lambda'})p\| < |\lambda - \lambda'|.$$

Since $ilde{\mathcal{T}}_{\lambda}(1-p)=0$, we obtain that

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'|.$$

Set $\tilde{T} = \lim_{\lambda \to 0} \tilde{T}_{\lambda}$. So $\tilde{T} \in L(H_3)$ and $\|\tilde{T}\| = \lim_{\lambda} \|\tilde{T}_{\lambda}\| = \|T\|$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Therefore

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'| \|k_1\|$$

for any $k_3 \in K(H_2)$. Thus

$$\|(\tilde{T}_{\lambda} - \tilde{T}_{\lambda'})p\| < |\lambda - \lambda'|.$$

Since $ilde{\mathcal{T}}_{\lambda}(1-p)=0$, we obtain that

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'|.$$

Set $\tilde{T} = \lim_{\lambda \to 0} \tilde{T}_{\lambda}$. So $\tilde{T} \in L(H_3)$ and $\|\tilde{T}\| = \lim_{\lambda} \|\tilde{T}_{\lambda}\| = \|T\|$. Since $\tilde{T}_{\lambda}|_{H_0} = T$ (if we identify H with $0 \oplus H$).

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Therefore

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'| \|k_1\|$$

for any $k_3 \in K(H_2)$. Thus

$$\|(\tilde{T}_{\lambda} - \tilde{T}_{\lambda'})p\| < |\lambda - \lambda'|.$$

Since $ilde{\mathcal{T}}_{\lambda}(1-p)=0, ext{ we obtain that }$

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'|.$$

Set $\tilde{T} = \lim_{\lambda \to 0} \tilde{T}_{\lambda}$. So $\tilde{T} \in L(H_3)$ and $\|\tilde{T}\| = \lim_{\lambda} \|\tilde{T}_{\lambda}\| = \|T\|$. Since $\tilde{T}_{\lambda}|_{H_0} = T$ (if we identify H with $0 \oplus H$). We conclude $\tilde{T}_{H_0} = T$ and $\|\tilde{T}|_{H_1}\| = \|T\|$.

Therefore

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'| \|k_1\|$$

for any $k_3 \in K(H_2)$. Thus

$$\|(\tilde{T}_{\lambda} - \tilde{T}_{\lambda'})p\| < |\lambda - \lambda'|.$$

Since $ilde{\mathcal{T}}_{\lambda}(1-p)=0, ext{ we obtain that }$

$$\|\tilde{T}_{\lambda} - \tilde{T}_{\lambda'}\| \le |\lambda - \lambda'|.$$

Set $\tilde{T} = \lim_{\lambda \to 0} \tilde{T}_{\lambda}$. So $\tilde{T} \in L(H_3)$ and $\|\tilde{T}\| = \lim_{\lambda} \|\tilde{T}_{\lambda}\| = \|T\|$. Since $\tilde{T}_{\lambda}|_{H_0} = T$ (if we identify H with $0 \oplus H$). We conclude $\tilde{T}_{H_0} = T$ and $\|\tilde{T}|_{H_1}\| = \|T\|$. This shows that H is injective in the category C_1 .

超す イヨト イヨト ニヨ

For the converse,

3

・ロト ・四ト ・ヨト ・ヨト

For the converse, we assume that H is injective in the category C_1 .

3

(日) (周) (三) (三)

For the converse, we assume that H is injective in the category C_1 . Suppose that E is a Hilbert A-module containing H as a closed submodule.

< 回 ト < 三 ト < 三 ト

For the converse, we assume that H is injective in the category C_1 . Suppose that E is a Hilbert A-module containing H as a closed submodule. Let $\iota : H \to H$ be the identity map.

・ 同 ト ・ ヨ ト ・ ヨ ト

For the converse, we assume that H is injective in the category C_1 . Suppose that E is a Hilbert A-module containing H as a closed submodule. Let $\iota : H \to H$ be the identity map. Since H is injective in C_1 there is $\tilde{\iota} \in L(E, H)$ such that $\tilde{\iota}|_H = \iota$ and $\|\tilde{\iota}\| = \|\iota\|$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

For the converse, we assume that H is injective in the category C_1 . Suppose that E is a Hilbert A-module containing H as a closed submodule. Let $\iota : H \to H$ be the identity map. Since H is injective in C_1 there is $\tilde{\iota} \in L(E, H)$ such that $\tilde{\iota}|_H = \iota$ and $\|\tilde{\iota}\| = \|\iota\|$. It is then easily checked that $(\tilde{\iota}^*)(\tilde{\iota})$ is a projection in L(E) and $(\tilde{\iota}^*)(\tilde{\iota})|_H = \iota$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

For the converse, we assume that H is injective in the category C_1 . Suppose that E is a Hilbert A-module containing H as a closed submodule. Let $\iota: H \to H$ be the identity map. Since H is injective in C_1 there is $\tilde{\iota} \in L(E, H)$ such that $\tilde{\iota}|_H = \iota$ and $\|\tilde{\iota}\| = \|\iota\|$. It is then easily checked that $(\tilde{\iota}^*)(\tilde{\iota})$ is a projection in L(E) and $(\tilde{\iota}^*)(\tilde{\iota})|_H = \iota$. This implies that His an orthogonal direct summand of E.

・ 同 ト ・ ヨ ト ・ ヨ ト …

For the converse, we assume that H is injective in the category C_1 . Suppose that E is a Hilbert A-module containing H as a closed submodule. Let $\iota : H \to H$ be the identity map. Since H is injective in C_1 there is $\tilde{\iota} \in L(E, H)$ such that $\tilde{\iota}|_H = \iota$ and $\|\tilde{\iota}\| = \|\iota\|$. It is then easily checked that $(\tilde{\iota}^*)(\tilde{\iota})$ is a projection in L(E) and $(\tilde{\iota}^*)(\tilde{\iota})|_H = \iota$. This implies that His an orthogonal direct summand of E. This completes the proof.

・ 伺 ト ・ ヨ ト ・ ヨ ト …

Theorem 2.10 Let A be a σ -unital C*-algebra.

э

イロト イポト イヨト イヨト

Theorem 2.10 Let A be a σ -unital C*-algebra. Then the following are equivalent:

Huaxin Lin Department of Mathematics East Introduction to Hilbert C*-modules, II

- N

Theorem 2.10 Let A be a σ -unital C*-algebra. Then the following are equivalent: (1) LM(A) = M(A);

.⊒ . ►

Theorem 2.10 Let A be a σ -unital C*-algebra. Then the following are equivalent: (1) LM(A) = M(A); (2) A is orthogonally complementary as a Hubert A-module; Theorem 2.10 Let A be a σ -unital C*-algebra. Then the following are equivalent:

(1) LM(A) = M(A);

(2) A is orthogonally complementary as a Hubert A-module;

(3) A is injective as a Hilbert A-module in the category C;

Theorem 2.10 Let A be a σ -unital C*-algebra. Then the following are equivalent:

(1) LM(A) = M(A);

(2) A is orthogonally complementary as a Hubert A-module;

(3) A is injective as a Hilbert A-module in the category C;

(4) For any closed right ideal R of A and $T \in L(R, A)$,
Theorem 2.10 Let A be a σ -unital C*-algebra. Then the following are equivalent:

(1) LM(A) = M(A);

(2) A is orthogonally complementary as a Hubert A-module;

(3) A is injective as a Hilbert A-module in the category C;

(4) For any closed right ideal R of A and $T \in L(R, A)$, there is

 $\tilde{T} \in M(A)$ such that $\tilde{T}|_R = T$ and $\|\tilde{T}\| = \|T\|$.

Theorem 2.10 Let A be a σ -unital C*-algebra. Then the following are equivalent:

(1) LM(A) = M(A); (2) A is orthogonally complementary as a Hubert A-module; (3) A is injective as a Hilbert A-module in the category C; (4) For any closed right ideal R of A and $T \in L(R, A)$, there is $\tilde{T} \in M(A)$ such that $\tilde{T}|_{R} = T$ and $\|\tilde{T}\| = \|T\|$.

It should be noted that for the implications $(1) \Rightarrow (2) (2) \Leftrightarrow (3) \Rightarrow (4)$ we do not need to assume that A is σ -unital.

3

イロン イヨン イヨン イヨン

(b) Every commutative C^* -algebra satisfies the conditions (I)-(4).

・ 同 ト ・ ヨ ト ・ ヨ ト

(b) Every commutative C^* -algebra satisfies the conditions (I)-(4).

(c) Let B be a C^{*}-algebra such that LM(B) = M(B) and c_0 be the

 C^* -algebra of sequences of complex numbers which converge to zero.

・ 同 ト ・ ヨ ト ・ ヨ ト

(b) Every commutative C^* -algebra satisfies the conditions (I)-(4).

(c) Let B be a C*-algebra such that LM(B) = M(B) and c_0 be the

C^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_0 \otimes B$ satisfies the conditions (I)-(4).

(b) Every commutative C^* -algebra satisfies the conditions (I)-(4).

(c) Let B be a C^{*}-algebra such that LM(B) = M(B) and c_0 be the

C^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_0 \otimes B$ satisfies the conditions (I)-(4).

(d) Let B be a unital C^* -algebra and X a locally compact Hausdorff space.

< 回 > < 三 > < 三 > .

- (a) Every unital C^* -algebra satisfies the conditions.
- (b) Every commutative C^* -algebra satisfies the conditions (I)-(4).
- (c) Let B be a C^{*}-algebra such that LM(B) = M(B) and c_0 be the
- *C*^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_0 \otimes B$ satisfies the conditions (I)-(4).
- (d) Let B be a unital C*-algebra and X a locally compact Hausdorff space. Then $C_0(X) \otimes B$ satisfies the conditions (I)-(4).

・ 同 ト ・ ヨ ト ・ ヨ ト …

- (a) Every unital C^* -algebra satisfies the conditions.
- (b) Every commutative C^* -algebra satisfies the conditions (I)-(4).
- (c) Let B be a C^{*}-algebra such that LM(B) = M(B) and c_0 be the
- *C*^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_0 \otimes B$ satisfies the conditions (I)-(4).
- (d) Let *B* be a unital C^* -algebra and *X* a locally compact Hausdorff space. Then $C_0(X) \otimes B$ satisfies the conditions (I)-(4).
- (e) We will see that if LM(B) = M(B), then $A = M_n(B)$, the C*-algebra of $n \times n$ matrices over B, satisfies the conditions (I)-(4).

(人間) トイヨト イヨト ニヨ

- (a) Every unital C^* -algebra satisfies the conditions.
- (b) Every commutative C^* -algebra satisfies the conditions (I)-(4).
- (c) Let B be a C*-algebra such that LM(B) = M(B) and c_0 be the
- *C*^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_0 \otimes B$ satisfies the conditions (I)-(4).
- (d) Let B be a unital C^{*}-algebra and X a locally compact Hausdorff space. Then $C_0(X) \otimes B$ satisfies the conditions (I)-(4).
- (e) We will see that if LM(B) = M(B), then $A = M_n(B)$, the C*-algebra of $n \times n$ matrices over B, satisfies the conditions (I)-(4).
- (f) The only stable C^* -algebra satisfying the conditions (I)-(4) are those dual C*-algebras.

(人間) とうき くうとう う

- (a) Every unital C^* -algebra satisfies the conditions.
- (b) Every commutative C^* -algebra satisfies the conditions (I)-(4).
- (c) Let B be a C*-algebra such that LM(B) = M(B) and c_0 be the
- *C*^{*}-algebra of sequences of complex numbers which converge to zero. Then $c_0 \otimes B$ satisfies the conditions (I)-(4).
- (d) Let *B* be a unital *C*^{*}-algebra and *X* a locally compact Hausdorff space. Then $C_0(X) \otimes B$ satisfies the conditions (I)-(4).
- (e) We will see that if LM(B) = M(B), then $A = M_n(B)$, the C*-algebra of $n \times n$ matrices over B, satisfies the conditions (I)-(4).
- (f) The only stable C^* -algebra satisfying the conditions (I)-(4) are those dual C*-algebras.
- (g) The only σ -unital simple C*-algebra satisfying the conditions (I)-(4) are those elementary ones (and unital ones).

Theorem 2.11 Let H be a countably generated Hilbert A-module.

Huaxin Lin Department of Mathematics East Introduction to Hilbert C*-modules, II

(日) (同) (三) (三)

Theorem 2.11 Let H be a countably generated Hilbert A-module. If H is orthogonally complementary or equivalently,

Let us consider the following question.

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules.

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let A be a C^{*}-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $Ped(A \otimes K)$.

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let A be a C*-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $Ped(A \otimes \mathcal{K})$. Denote by $\widetilde{QT}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let A be a C*-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{QT}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$. We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let A be a C*-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{QT}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$. We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$. Define, for each $\delta > 0$,

< 回 ト < 三 ト < 三 ト

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let A be a C*-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{QT}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$. We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.

Define, for each $\delta > 0$, a function $f_{\delta} \in C([0,\infty))$ by $0 \leq f_{\delta}(t) \leq 1$,

< 回 ト < 三 ト < 三 ト

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let A be a C*-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{QT}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$. We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$. Define, for each $\delta > 0$, a function $f_{\delta} \in C([0,\infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t) = 0$ if $t \in [0, \delta/2]$

(4 回) (4 \Pi) (4 \Pi)

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let A be a C*-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{QT}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$. We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$. Define, for each $\delta > 0$, a function $f_{\delta} \in C([0,\infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t) = 0$ if $t \in [0, \delta/2]$ and $f_{\delta}(t) = 1$ if $t \in [\delta, \infty)$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let A be a C*-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{QT}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$. We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$. Define, for each $\delta > 0$, a function $f_{\delta} \in C([0,\infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t) = 0$ if $t \in [0, \delta/2]$ and $f_{\delta}(t) = 1$ if $t \in [\delta, \infty)$ and $f_{\delta}(t)$ is linear in $(\delta/2, \delta)$.

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let A be a C*-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{QT}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$. We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$. Define, for each $\delta > 0$, a function $f_{\delta} \in C([0,\infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t) = 0$ if $t \in [0, \delta/2]$ and $f_{\delta}(t) = 1$ if $t \in [\delta, \infty)$ and $f_{\delta}(t)$ is linear in $(\delta/2, \delta)$. Note that, for any $a \in (A \otimes \mathcal{K})_+$, $f_{\delta}(a) \in \operatorname{Ped}(A \otimes \mathcal{K})$.

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let A be a C*-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $\operatorname{Ped}(A \otimes \mathcal{K})$. Denote by $\widetilde{QT}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.

We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.

Define, for each $\delta > 0$, a function $f_{\delta} \in C([0,\infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t) = 0$ if $t \in [0, \delta/2]$ and $f_{\delta}(t) = 1$ if $t \in [\delta, \infty)$ and $f_{\delta}(t)$ is linear in $(\delta/2, \delta)$. Note that, for any $a \in (A \otimes \mathcal{K})_+$, $f_{\delta}(a) \in \operatorname{Ped}(A \otimes \mathcal{K})$. For $a \in (A \otimes \mathcal{K})_+$,

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

Let us consider the following question. Suppose that $H_0 \subset H$ are Hilbert *A*-modules. How large could the orthogonal complement of H_0 (in H) be?

Let A be a C*-algebra. A densely defined 2-quasitrace is a 2-quasitrace defined on $Ped(A \otimes \mathcal{K})$. Denote by $\widetilde{QT}(A)$ the set of densely defined 2-quasitraces on $A \otimes \mathcal{K}$.

We identify A with $A \otimes e_{1,1}$ a corner of $A \otimes \mathcal{K}$.

Define, for each $\delta > 0$, a function $f_{\delta} \in C([0,\infty))$ by $0 \leq f_{\delta}(t) \leq 1$, $f_{\delta}(t) = 0$ if $t \in [0, \delta/2]$ and $f_{\delta}(t) = 1$ if $t \in [\delta, \infty)$ and $f_{\delta}(t)$ is linear in $(\delta/2, \delta)$. Note that, for any $a \in (A \otimes \mathcal{K})_+$, $f_{\delta}(a) \in \operatorname{Ped}(A \otimes \mathcal{K})$. For $a \in (A \otimes \mathcal{K})_+$, define

We say A has strict comparison,

2

(日) (周) (三) (三)

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$,

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a) < d_{\tau}(b)$ for all $\tau \in \widetilde{QT}(A)$

< 回 ト < 三 ト < 三 ト

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a) < d_{\tau}(b)$ for all $\tau \in \widetilde{QT}(A)$ implies that $a \lesssim b$

< 回 ト < 三 ト < 三 ト

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a) < d_{\tau}(b)$ for all $\tau \in \widetilde{QT}(A)$ implies that $a \leq b$ (in the sense of Cuntz, i.e., there exists a sequence $\{x_n\} \subset A \otimes \mathcal{K}$ such that $\lim_{n \to \infty} ||a - x_n^* b x_n|| = 0$.

く 同 ト く ヨ ト く ヨ ト

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a) < d_{\tau}(b)$ for all $\tau \in \widetilde{QT}(A)$ implies that $a \leq b$ (in the sense of Cuntz, i.e., there exists a sequence $\{x_n\} \subset A \otimes \mathcal{K}$ such that $\lim_{n \to \infty} \|a - x_n^* b x_n\| = 0$. Let A be a σ -unital simple C*-algebra.

・ 同 ト ・ ヨ ト ・ ヨ ト …

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a) < d_{\tau}(b)$ for all $\tau \in \widetilde{QT}(A)$ implies that $a \leq b$ (in the sense of Cuntz, i.e., there exists a sequence $\{x_n\} \subset A \otimes \mathcal{K}$ such that $\lim_{n\to\infty} \|a - x_n^* b x_n\| = 0$. Let A be a σ -unital simple C*-algebra. If $e \in \operatorname{Ped}(A \otimes \mathcal{K})_+$.
We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a) < d_{\tau}(b)$ for all $\tau \in \widetilde{QT}(A)$ implies that $a \leq b$ (in the sense of Cuntz, i.e., there exists a sequence $\{x_n\} \subset A \otimes \mathcal{K}$ such that $\lim_{n\to\infty} \|a - x_n^* b x_n\| = 0$. Let A be a σ -unital simple C*-algebra. If $e \in \operatorname{Ped}(A \otimes \mathcal{K})_+$. Then $B = \overline{a(A \otimes \mathcal{K})a}$ is algebraically simple and $\operatorname{Ped}(B) = B$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

We say A has strict comparison, if for any pair $a, b \in A \otimes \mathcal{K}$, $d_{\tau}(a) < d_{\tau}(b)$ for all $\tau \in \widetilde{QT}(A)$ implies that $a \leq b$ (in the sense of Cuntz, i.e., there exists a sequence $\{x_n\} \subset A \otimes \mathcal{K}$ such that $\lim_{n\to\infty} ||a - x_n^* bx_n|| = 0$. Let A be a σ -unital simple C*-algebra. If $e \in \operatorname{Ped}(A \otimes \mathcal{K})_+$. Then $B = \overline{a(A \otimes \mathcal{K})a}$ is algebraically simple and $\operatorname{Ped}(B) = B$. Moreover $B \otimes \mathcal{K} \cong A \otimes \mathcal{K}$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

If A is a σ -unital algebraically simple C*-algebra, denote by QT(A) the set of all 2-quasitraces τ on A with $||\tau|| = 1$.

- 4 同 6 4 日 6 4 日 6

If A is a σ -unital algebraically simple C*-algebra, denote by QT(A) the set of all 2-quasitraces τ on A with $\|\tau\| = 1$. Then $0 \notin \overline{QT(A)}^w$.

$$\omega(a) = \lim_{n \to \infty} \sup\{d_{\tau}(a) - \tau(f_{1/n}(a)) : \tau \in \overline{QT(A)}^w\}.$$

$$\omega(a) = \lim_{n \to \infty} \sup\{d_{\tau}(a) - \tau(f_{1/n}(a)) : \tau \in \overline{QT(A)}^w\}.$$

The function $d_{\tau}(a)$ $(\tau \in \overline{QT(A)}^{w})$ is continuous if and only if $\omega(a) = 0$.

$$\omega(a) = \lim_{n \to \infty} \sup\{d_{\tau}(a) - \tau(f_{1/n}(a)) : \tau \in \overline{QT(A)}^{w}\}$$

The function $d_{\tau}(a)$ $(\tau \in \overline{QT(A)}^{w})$ is continuous if and only if $\omega(a) = 0$. Let H be a countably generated Hilbert A-module.

$$\omega(a) = \lim_{n \to \infty} \sup\{d_{\tau}(a) - \tau(f_{1/n}(a)) : \tau \in \overline{QT(A)}^{w}\}.$$

The function $d_{\tau}(a)$ ($\tau \in \overline{QT(A)}^{W}$) is continuous if and only if $\omega(a) = 0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_A .

$$\omega(a) = \lim_{n \to \infty} \sup\{d_{\tau}(a) - \tau(f_{1/n}(a)) : \tau \in \overline{QT(A)}^{w}\}.$$

The function $d_{\tau}(a)$ ($\tau \in \overline{QT(A)}^{w}$) is continuous if and only if $\omega(a) = 0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_A . Note $K(H_A) \cong A \otimes \mathcal{K}$.

$$\omega(a) = \lim_{n \to \infty} \sup\{d_{\tau}(a) - \tau(f_{1/n}(a)) : \tau \in \overline{QT(A)}^{w}\}.$$

The function $d_{\tau}(a)$ ($\tau \in \overline{QT(A)}^{w}$) is continuous if and only if $\omega(a) = 0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_A . Note $K(H_A) \cong A \otimes \mathcal{K}$. So K(H) is viewed as a hereditary C^* -subalgebra of $A \otimes \mathcal{K}$.

$$\omega(a) = \lim_{n \to \infty} \sup\{d_{\tau}(a) - \tau(f_{1/n}(a)) : \tau \in \overline{QT(A)}^{w}\}.$$

The function $d_{\tau}(a)$ ($\tau \in \overline{QT(A)}^{w}$) is continuous if and only if $\omega(a) = 0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_A . Note $K(H_A) \cong A \otimes \mathcal{K}$. So K(H) is viewed as a hereditary C^* -subalgebra of $A \otimes \mathcal{K}$. Let $a \in K(H)$ be a strictly positive element.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$\omega(a) = \lim_{n \to \infty} \sup\{d_{\tau}(a) - \tau(f_{1/n}(a)) : \tau \in \overline{QT(A)}^w\}.$$

The function $d_{\tau}(a)$ ($\tau \in \overline{QT(A)}^{w}$) is continuous if and only if $\omega(a) = 0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_A . Note $\mathcal{K}(H_A) \cong A \otimes \mathcal{K}$. So $\mathcal{K}(H)$ is viewed as a hereditary C^* -subalgebra of $A \otimes \mathcal{K}$. Let $a \in \mathcal{K}(H)$ be a strictly positive element. Define $d_{\tau}(H) = d_{\tau}(a)$ for $\tau \in \overline{QT(A)}^{w}$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$\omega(a) = \lim_{n \to \infty} \sup\{d_{\tau}(a) - \tau(f_{1/n}(a)) : \tau \in \overline{QT(A)}^w\}.$$

The function $d_{\tau}(a)$ $(\tau \in \overline{QT(A)}^{w})$ is continuous if and only if $\omega(a) = 0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_A . Note $K(H_A) \cong A \otimes \mathcal{K}$. So K(H) is viewed as a hereditary C^* -subalgebra of $A \otimes \mathcal{K}$. Let $a \in K(H)$ be a strictly positive element. Define $d_{\tau}(H) = d_{\tau}(a)$ for $\tau \in \overline{QT(A)}^{w}$. It is well defined.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

$$\omega(a) = \lim_{n \to \infty} \sup\{d_{\tau}(a) - \tau(f_{1/n}(a)) : \tau \in \overline{QT(A)}^{w}\}.$$

The function $d_{\tau}(a)$ ($\tau \in \overline{QT(A)}^{w}$) is continuous if and only if $\omega(a) = 0$. Let H be a countably generated Hilbert A-module. Then, by a Kasparov' theorem, we may view H is a Hilbert A-submodule of H_A . Note $K(H_A) \cong A \otimes \mathcal{K}$. So K(H) is viewed as a hereditary C^* -subalgebra of $A \otimes \mathcal{K}$. Let $a \in K(H)$ be a strictly positive element. Define $d_{\tau}(H) = d_{\tau}(a)$ for $\tau \in \overline{QT(A)}^{w}$. It is well defined. Then define $\omega(H) = \omega(a)$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Theorem 2.12 Let A be a σ -unital algebraically simple C*-algebra with strict comparison.

Theorem 2.12 Let A be a σ -unital algebraically simple C*-algebra with strict comparison. Suppose that $H_0 \subset H$ are countably generated Hilbert A-modules.

$$d_{\tau}(H_{00} \oplus H_{00}^{\perp}) > d_{\tau}(H) - \omega(H_0) - \epsilon \text{ and} \qquad (e \, 0.2)$$

$$d_{\tau}(H_{00} \oplus H_{00}^{\perp}) > d_{\tau}(H) - \omega(H_0) - \epsilon \text{ and} \qquad (e 0.2)$$

$$d_{\tau}(H_{00}) > d_{\tau}(H_0) - \omega(H_0) - \epsilon.$$

$$d_{\tau}(H_{00} \oplus H_{00}^{\perp}) > d_{\tau}(H) - \omega(H_0) - \epsilon \text{ and} \qquad (e 0.2)$$

$$d_{\tau}(H_{00}) > d_{\tau}(H_0) - \omega(H_0) - \epsilon. \qquad (e \, 0.3)$$

for all $\tau \in \overline{QT(A)}^w$,

$$d_{\tau}(H_{00} \oplus H_{00}^{\perp}) > d_{\tau}(H) - \omega(H_0) - \epsilon \text{ and} \qquad (e \, 0.2)$$

$$d_{\tau}(H_{00}) > d_{\tau}(H_0) - \omega(H_0) - \epsilon. \qquad (e \, 0.3)$$

for all $\tau \in \overline{QT(A)}^w$, where $H_{00}^{\perp} = \{x \in H : \langle x, h \rangle = 0 \text{ for all } h \in H_{00}\}.$

Corollary 2.13 Let A be a σ -unital algebraically simple C*-algebra with strict comparison.

Corollary 2.13 Let A be a σ -unital algebraically simple C*-algebra with strict comparison. Suppose that $H_0 \subset H$ are countably generated Hilbert A-modules.

Corollary 2.13 Let A be a σ -unital algebraically simple C*-algebra with strict comparison. Suppose that $H_0 \subset H$ are countably generated Hilbert A-modules. Suppose that $\omega(H_0) = 0$.

$$d_{\tau}(H_{00} \oplus H_{00}^{\perp}) > d_{\tau}(H) - \epsilon \text{ and}$$
 (e0.4)

$$d_{\tau}(H_{00} \oplus H_{00}^{\perp}) > d_{\tau}(H) - \epsilon \text{ and}$$
 (e 0.4)
$$d_{\tau}(H_{00}) > d_{\tau}(H_{0}) - \epsilon.$$
 (e 0.5)

for all $\tau \in \overline{QT(A)}^w$.